Performances Environnementales des Ouvrages Géotechniques sur leur cycle de vie (PEOGEO)

76 Lee, M., & Basu, D. (2022). Environmental impacts of drilled shafts in sand. Proceedings of the Institution of Civil Engineers - Engineering Sustainability , 1–14. https://doi.org/10.1680/jensu.21.00091 Li, L., & Chen, K. (2017). Quantitative assessment of carbon dioxide emissions in construction projects: A case study in Shenzhen. Journal of Cleaner Production , 141, 394–408. https://doi.org/10.1016/j.jclepro.2016.09.134 Luo, W., Sandanayake, M., & Zhang, G. (2019). Direct and indirect carbon emissions in foundation construction – Two case studies of driven precast and cast-in-situ piles. Journal of Cleaner Production , 211, 1517–1526. https://doi.org/10.1016/j.jclepro.2018.11.244 Miguel, G. D., Saldanha, R. B., da Silva, A., Festugato, L., Chaves, H. M., & Mendes, C. C. (2022). Life Cycle Assessment Comparison of Distinct Soil Stabilizations Methods: An Environmental and Cost Approach to the Soil Improvement. Proceedings of the Institution of Civil Engineers - Ground Improvement , 1–41. https://doi.org/10.1680/jgrim.21.00006a Misra, A., & Basu, D. (2012). A Quantitative Sustainability Indicator System for Pile Foundations. GeoCongress 2012 . https://doi.org/10.1061/9780784412121.437 Nordelöf, A., & Tillman, A. M. (2018). A scalable life cycle inventory of an electrical automotive traction machine—Part II: manufacturing processes. International Journal of Life Cycle Assessment , 23(2), 295– 313. https://doi.org/10.1007/s11367-017-1309-8 Ondova, M., & Estokova, A. (2016). Environmental impact assessment of building foundation in masonry family houses related to the total used building materials. Environmental Progress & Sustainable Energy , 35(4), 1113–1120. https://doi.org/10.1002/ep.12307 Ongpeng, J. M. C., & Ginga, C. P. (2021). Life Cycle Assessment and Carbon Footprint Analysis of Recycled Aggregates in the Construction of Earth-Retaining Walls During Reconstruction. Advances of Footprint Family for Sustainable Energy and Industrial Systems , 15–34. https://doi.org/10.1007/978-3-030-76441- 8_2 Pešta, J., Pavlo˚, T., Fořtová, K., & Řepka, J. (2021). Recycled concrete for foundation structure: LCA case study. IOP Conference Series: Materials Science and Engineering , 1196(1), 012012. https://doi.org/10.1088/1757-899x/1196/1/012012 Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production , 411–420. https://doi.org/10.1016/j.jclepro.2018.04.268 Pujadas-Gispert, E., Sanjuan-Delmás, D., & Josa, A. (2018). Environmental analysis of building shallow foundations: The influence of prefabrication, typology, and structural design codes. Journal of Cleaner Production , 186, 407–417. https://doi.org/10.1016/j.jclepro.2018.03.105 Pujadas-Gispert, E., Sanjuan-Delmás, D., de la Fuente, A., Moonen, S. P. G. (Faas), & Josa, A. (2020). Environmental analysis of concrete deep foundations: Influence of prefabrication, concrete strength, and design codes. Journal of Cleaner Production , 244, 118751. https://doi.org/10.1016/j.jclepro.2019.118751

RkJQdWJsaXNoZXIy MTIzMTM=