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Résumé de l’étude :  

Le projet RINA proposé dans le cadre de l’AAP 2020 de la Fondation Férec (Intelligence arti-
ficielle appliquée aux infrastructures en service) vise à étudier la faisabilité de l’utilisation de 
l’intelligence artificielle (IA) dans le contexte des risques géologiques. Sur un site test instable, 
les données d‘observation de l’aléa rocheux et les données climatiques (température, précipi-
tation) sont analysées à l’aide des outils d’intelligence artificielle. L’objectif est de proposer une 
puissante aide à la décision aux exploitants des réseaux routiers et ferroviaires afin de main-
tenir la qualité de service sur les infrastructures de transport menacées par des aléas rocheux 
lors d’événements météorologiques intenses. 

Trois types de modèles d’apprentissage automatique ont été mis en œuvre (les plus proches 
voisins, les arbres de décision et les réseaux de neurones) pour construire des modèles pré-
dictifs de chutes de blocs en lien avec les précipitations sur la Route du Littoral (RN1) à la 
Réunion. La performance des modèles a été évaluée à l’aide de plusieurs métriques : le rappel, 
la précision et l’exactitude pondérée et a été comparée à celle de la règle experte utilisée de 
façon opérationnelle par le service des routes. Les modèles d'arbres de décision et les réseaux 
de neurones fournissent des résultats similaires à ceux de la règle experte avec des compro-
mis différents entre rappel et précision, la règle experte se situant entre les 2. 

Plusieurs perspectives au projet RINA ont été dressées. Sur le site d’étude, d’autres dévelop-
pements plus poussés peuvent être envisagés : d'autres modèles d'arbres de décision ou de 
réseaux neuronaux peuvent être dérivés en fonction de la taille des blocs éboulés car les 
processus de déclenchement sont différents entre les petits et les gros blocs. La question du 
transfert de ces modèles d'IA sur d'autres périodes avec moins d'éboulements (comme la pé-
riode 2008-2020 sur le site de la RN1 à la Réunion) pourrait être conduite pour évaluer la 
capacité de prédiction des modèles avec beaucoup moins d'événements. La dernière pers-
pective concerne deux sujets qui sont des thèmes de recherche plus larges au sein de la 
communauté de l'IA : la question de l'explicabilité des modèles d'IA et le transfert des modèles 
par apprentissage sur d'autres sites. Ces deux sujets sont au centre du projet « C2R-IA » 
déposé à l’AAPG 2022 de l’ANR au sein de l’axe H.16 : Interfaces : mathématiques, sciences 
du numérique – sciences du système Terre et de l’environnement. 

 

Les développements réalisés dans le cadre du projet RINA ainsi que les résultats obtenus sont 
présentés de façon synthétique dans ce rapport. En annexe, figurent deux rapports réalisés 
dans le cadre du projet RINA : celui d’un stage de Master 2 orienté Risques Rocheux et celui 
du contrat orienté IA réalisé par un ingénieur de recherche. 

 

Les partenaires du projet RINA souhaitent remercier la Fondation Ferec pour avoir subven-
tionné ce projet et ainsi initié une dynamique forte entre acteurs du risque rocheux et de l’in-
telligence artificielle. Ils remercient sincèrement le Conseil Régional de la Réunion qui a mis à 
disposition la base de données de chutes de blocs collectée sur la Route Nationale 1 de la 
Réunion ainsi que les données pluviométriques. Ce travail a été mené dans le cadre du projet 
national C2ROP (Chute de blocs, Risque Rocheux et Ouvrages de Protection) et les parte-
naires de RINA remercient l’IREX et INDURA pour leur soutien ainsi que les maitres d’ou-
vrages SNCF et CD 73. 
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1. CONTEXTE ET OBJECTIFS DU PROJET RINA 

En montagne, les infrastructures de transport sont exposées à des risques gravitaires (ébou-
lements rocheux, laves torrentielles, avalanches de neige) qui peuvent entraîner leur fermeture 
ainsi que des dommages significatifs aux biens et aux personnes. Dans un contexte de chan-
gement climatique, on constate une recrudescence des événements gravitaires en lien avec 
la remontée de la limite pluie-neige et la recrudescence d’événements pluvieux violents. Les 
acteurs du risque rocheux, fédérés au sein du projet national C2ROP, ont réalisé des avancées 
considérables sur la gestion du risque depuis 2015. Le projet RINA vient enrichir cette dyna-
mique en investiguant l’utilisation de l’IA. 

Le projet vise à développer des modèles prédictifs basés sur l’IA pour maintenir la qualité de 
service sur les infrastructures de transport menacées par des événements rocheux lors d’épi-
sodes météorologiques intenses. Il s’agit de permettre aux gestionnaires d’infrastructures 
d’anticiper une évolution défavorable de l’aléa afin de mettre en œuvre des dispositifs de miti-
gation des risques (limitation d’accès, surveillance, mobilisation de kits d’urgence, mainte-
nance prédictive). 

Les données météorologiques et d’observation de l’aléa rocheux disponibles sont de plus en 
plus massives avec les progrès technologiques des moyens de mesure. Les radars météoro-
logiques fournissent des données à haute fréquence temporelle à l’échelle d’un massif. Con-
cernant l’aléa rocheux, des technologies récentes (radars terrestres, scanners laser ou photo-
grammétrie) fournissent une information spatialisée des mouvements. Dans ce contexte, des 
défis se posent dans l'intégration des caractéristiques multi-physiques de ces données, qui 
sont nécessaires pour fournir une compréhension cohérente et une prédiction fiable des phé-
nomènes et de leurs impacts. Les approches standards reposant sur la détermination de mo-
dèles multi-échelles et multi-physiques sont assez complexes pour intégrer les couplages ther-
miques, hydriques et mécaniques et leur capacité est limitée à couvrir des échelles allant du 
site au bassin de risque. Compte tenu du volume et de la variété des données, des approches 
issues de l’IA et de la « data science » (en particulier l’apprentissage automatique et sa 
branche « deep learning ») semblent être un moyen prometteur pour induire des données 
elles-mêmes des modèles prédictifs du risque.  

Les verrous scientifiques de ce projet résident dans le traitement de données massives (multi-
sources, fréquences d’acquisition différentes) en géosciences par IA. Par ailleurs, le potentiel 
réel des méthodes associant l’IA pour des applications pratiques en géosciences n’a pas en-
core été démontré. Enfin, les chutes de blocs sont des évènements rares ce qui rend l’entrai-
nement des modèles plus difficiles. 

Dans le cadre du projet RINA, les résultats attendus concernent une preuve de concept des 
modèles IA pour la prédiction des chutes de blocs en lien avec les facteurs climatiques. En 
particulier, trois points sont à établir :  

• Définition des données et de leurs traitements pertinents, 

• Identification des méthodes d’Intelligence Artificielle pertinentes, 

• Pertinence de l’analyse prédictive par IA avec comparaison des résultats et des faits. 

Au-delà du démonstrateur, le projet RINA a pour ambition d’établir une base technique et 
scientifique pour la soumission d’un projet à l’AAPG 2022 de l’ANR, en complémentarité du 
montage de la suite du PN C2ROP. 
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2. ORGANISATION ET ACTEURS 

Le projet RINA est porté par trois partenaires du domaine du risque rocheux (Cerema, BRGM 

et Géolithe). Une des ambitions du projet était d’établir un consortium plus large intégrant les 

compétences du domaine de l’intelligence artificielle pour mettre en place le démonstrateur 

affiché. Le partenaire IA intégré dans le cadre du projet RINA est le laboratoire LISTIC (Labo-

ratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance de l’uni-

versité Savoie Mont-Blanc).  

Le projet RINA, subventionné par la fondation Ferec, a permis de mobiliser essentiellement 

des compétences en IA (CDD ingénieur de recherche de 4 mois au LISTIC – Hermann Cour-

teille et accompagnement du LISTIC) et en risque rocheux (stage de master 2 de 6 mois - 

Guilherme Cunha de Barros-Santos) en plus de l’investissement des partenaires. 

 

 

Figure 1 : Organisation et acteurs du projet RINA 

 

3. DEVELOPPEMENTS 

3.1  Site d’étude et données utilisées 

Le site d’étude considéré dans le cadre du projet RINA est la route nationale 1 sur l’île de la 

Réunion (Figure 2). La route nationale 1 est situé au Nord de l’ile et relie Saint-Denis à la 

Possession en 13 km. Sur la majorité du tracé, la route est surplombée par des falaises (Figure 

3) d’une hauteur comprise entre 40 m et 200 m.  
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Figure 2 : Localisation de l’ile de la Réunion 

Figure 3 : falaise surplombant la RN1 

 

Ce site a été retenu pour deux raisons. D’une part, c’est un site de chutes de blocs particuliè-

rement productif (sur la période étudiée, environ 13% des jours se produisent des chutes de 

blocs) même si les journées avec évènements sont minoritaires. D’autre part, il a été montré 

que les précipitations sont le facteur déclenchant prépondérant (Delonca et al, 2014).  

Les chutes de blocs (Erreur ! Source du renvoi introuvable.) atteignent principalement la 

route coté montagne. Le service de gestion de la route du Conseil Départemental de la Réu-

nion enregistre la date des chutes de blocs, leur masse (estimée) ainsi que la localisation (PR) 

le long de la route. Dans le projet, les données utilisées sont donc la base de données consti-

tuée par le Conseil Régional de la Réunion sur la période 2000 à 2007 avant la mise en place 

massive de structures de protection le long de la route. Après cette phase de protection, le 

nombre de chutes de blocs a été considérablement réduit puisque la production de chutes de 

blocs a été modifié par les parades actives (empêchement des blocs de se détacher) ou pas-

sives (interception lors de leur propagation). Les précipitations quotidiennes sont également 

des données d’entrée et sont mesurées sur trois pluviomètres installés le long de la route. Sur 

la Figure 5, on constate que les chutes de blocs ne sont pas réparties uniformément le long 

de la route. Une analyse spatio-temporelle serait intéressante à mener en prenant en compte 

la géologie, la présence de protection et la géométrie de propagation des blocs. Mais dans un 

premier temps, seule une analyse temporelle a été menée. 

 

 



Livrable – Projet RINA – AAP Fondation Ferec / Novembre 2021 9/20 

 

Figure 4 : Exemple de chutes de bloc 

 

 

Figure 5 : Distribution des chutes de blocs le long de la 

RN1 

 

3.2  Analyse descriptive des données 

Avant de décrire les modèles IA utilisés, une analyse descriptive des données permet de véri-

fier et comprendre les données. La corrélation entre précipitations et chutes de blocs est mise 

en évidence sur la Figure 6. Les nombres d’évènements de chutes de blocs augmentent 

lorsqu’il pleut plus. La Figure 7 montre la distribution des précipitations les jours avec des 

chutes de blocs (rouge) et les jours sans chutes de blocs (bleu). On constate que les deux 

distributions sont très différentes et que la moyenne des précipitations les jours avec chutes 

de blocs est dix fois supérieure à la valeur moyenne des jours sans chutes de blocs qui est 

très faible soit 2 mm. On remarque néanmoins que des chutes de blocs se produisent sans 

précipitations les jours précédents l’évènement. C’est le bruit existant sur le site et ces chutes 

de blocs ne pourront pas être expliquées par le facteur de forçage étudié dans ce projet à 

savoir les précipitations. 

 

Figure 6 : Précipitations et chutes de blocs quotidiens 

entre 2000 et 2008 

 

Figure 7 : Distribution des précipitations les jours avec 

chutes de blocs (rouge) et sans chutes de blocs (bleu) 
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3.3 Modèles IA et métriques 

Dans cette partie, nous présentons les modèles d’intelligence artificielle testés dans le cadre 
du projet RINA qui visent à construire des modèles prédictifs de chutes de blocs à partir des 
précipitations des jours précédents.  

Il s’agit en fait de répondre à la question : y-aura-t-il une ou plusieurs chutes de blocs le jour J 
en fonction des précipitations des jours précédents (de J-1 à J-5 ou J-10) ? Les données d’en-
trée de ces modèles sont donc uniquement les précipitations des jours précédents (on utilise 
un délai entre 5 et 10 jours). En premier lieu, la sortie est une prédiction booléenne indiquant 
s’il y a au moins une chute de blocs. Les modèles sont donc des classifieurs binaire. 

3.3.1 Modèle de référence 

Avant de décrire les modèles IA, le modèle prédictif de référence est la règle de gestion ex-
perte mise en place en 2004 (Batista, 2016) et utilisé pendant la période d’étude (2000-2007) 
par le service de gestion de la route. Cette règle définit une fermeture de 72 heures de la route 
coté montagne si le cumul des précipitations sur 24 h est supérieur à 30 mm et la fermeture 
est réduite à 24 heures si ce cumul est compris entre 15 et 30 mm.  

3.3.2 Modèles machine learning 

Trois types de modèles machine learning ont été utilisés : les modèles des plus proches voisins,  
des arbres de décision et les réseaux de neurones issus du deep learning. 

Pour les modèles type plus proches voisins (Figure 8), la prédiction pour un nouvel individu 
est basée sur la proximité avec des individus connus. La taille du voisinage est dans ce cas à 
optimiser. 

Pour les modèles type arbre de décision (Figure 9), le classificateur à arbre simple consiste 
en une série de décisions logiques binaires afin de choisir la catégorie qu'il va prédire. Chaque 
décision est basée simplement sur l'une des données d’entrée. Des modèles plus sophistiqués 
avec assemblage (comme la forêt aléatoire) ou le classificateur à gradient basé sur l'histo-
gramme ont été optimisés pour obtenir les meilleurs résultats. 

Pour l'apprentissage profond, nous utilisons des réseaux neuronaux (Figure 10). Les réseaux 
de neurones se composent d'une première couche, avec un neurone par donnée d'entrée, 
d'une série de couches avec différents neurones et d'une couche finale avec la sortie. Dans 
notre cas, la sortie est binaire : éboulement ou pas ? Chaque neurone reçoit des valeurs de la 
couche précédente, les agrège et envoie une valeur à la couche suivante. Il est caractérisé 
par des poids, un biais et une fonction d'activation. Deux modèles ont été testés : les réseaux 
de neurones dense (DNN) et les réseaux de neurones convolutifs (CNN). 

Avant la calibration de ces modèles, une optimisation des hyperparamètres est effectuée. Les 
hyperparamètres sont par exemple le nombre de voisins, la profondeur de l'arbre, le nombre 
de couches cachées ou le nombre de neurones par couche. 
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Figure 8: modèle type proches voisins 
Figure 9 : modèle type arbre de décision 

Figure 10 : modèle type réseau de neurones 

 

 

3.3.3 Métriques d’évaluation des modèles 

Les modèles prédictifs sont construits sur un ensemble d'apprentissage (données de 2000 à 
2004) et évalués sur les données de test (données de 2005 à 2007), ces deux ensembles 
arborant un comportement stationnaire dans le temps. Les performances des modèles sont 
évaluées à l'aide de la matrice de confusion calculée sur les données de test (Tableau 1). La 
matrice de confusion est un tableau de deux lignes et deux colonnes qui indique le nombre 
de : 

• vrais positifs (VP) : jours avec événements et le modèle prédit des événements,  

• vrais négatifs (VN) : jours sans événements et le modèle ne prédit aucun événement, 

• faux positifs (FP) : jours sans événements et le modèle prédit des événements, 

• faux négatifs (FN) : jours avec événements et le modèle ne prédit aucun événement.  

 
  

Réalité 

  
Pas de chutes de blocs Chutes de blocs 

P
ré

d
ic

-
ti

o
n

s 

Pas de chutes de blocs Vrai négatif (VN) Faux négatif (FN) 

Chutes de blocs Faux positif (FP) Vrai positif (VP) 

Tableau 1 : Matrice de confusion 
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Nous avons utilisé trois métriques, dérivées de la matrice de confusion pour évaluer la perfor-
mance : 

1.  Le rappel permet de détecter la fraction d'événements de chutes de blocs prédits 
parmi tous les événements ayant eu lieu. Une augmentation du rappel signifie que 
nous sommes capables de mieux détecter les événements et donc d'améliorer la 
sécurité sur la route. 

 ������ = ��
��	
�  

2. La précision est la fraction de chutes de blocs réelles parmi tous les événements 
prédits. Une augmentation de la précision signifie que nous diminuons le nombre de 
faux positifs et que nous réduisons le nombre de jours de fermeture de la route inutiles 
puisque sans évènements réels. La conséquence directe d’une augmentation de la 
précision présente un avantage économique. 

��é������ = ��
�� + ��  

3. L’exactitude est la fraction de bonnes prédictions parmi l’ensemble (“Accuracy” en 
anglais). Au vu du déséquilibre des classes dans nos jeux de données, on lui préfère 
l’exactitude pondérée. 

���������� ����é�é� =  �
�  � ��

��	
� + ��
��	
� �  

3.4   Résultats 

Pour chaque type de modèles, une optimisation des hyper-paramètres a été conduite. Puis 
les modèles ont été entrainés sur le jeu de données d’entrainement (2000-2004) avant d’être 
évalués (2005-2007). La capacité de prédiction des différents modèles est maintenant présen-
tée.  

 

3.4.1 Modèle expert 

Les performances du modèle de référence (modèle expert) sont d'abord calculées. La règle 
opérationnelle implémentée sur les données de test, indique que les événements de chutes 
de blocs se produisent le jour J si les précipitations du jour précédent J-1 sont supérieures à 
15 mm ou si les précipitations des jours J-2 ou J-3 sont supérieures à 30 mm  

Parmi les 146 jours avec des événements (données de test entre 2005 et 2007), le modèle 
expert a permis d'en identifier 43 (Tableau 2). L'exactitude pondérée est égale à 0,6, le rappel 
vaut 0,3 et la précision 0,37 (Tableau 6). 

  
Réalité 

  
Pas de chutes de blocs Chutes de blocs 

P
ré

d
ic

-
ti

o
n

s 

Pas de chutes de blocs 870 103 

Chutes de blocs 74 43 

Tableau 2 : Matrice de confusion – Modèle expert (référence) 
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3.4.2 Modèle des plus proches voisins 

Pour le modèle des plus proches voisins, le meilleur modèle est obtenu après réglage des 
hyper paramètres avec 15 voisins. Dans ce cas, 30 chutes de pierres peuvent être identifiées 
(Tableau 3) avec un taux de prédiction similaire, un rappel inférieur et une précision supérieure 
à celle du modèle expert (Tableau 6). Comme moins d'éboulements sont prédits avec ce type 
de modèle, la sécurité des usagers de la route diminue. Mais en même temps, la route est 
moins fermée quand il n’y a pas de chutes de blocs et les intérêts économiques sont moins 
contraints. 

  
Réalité 

  
Pas de chutes de blocs Chutes de blocs 

P
ré

d
ic

-
ti

o
n

s 

Pas de chutes de blocs 917 116 

Chutes de blocs 27 30 

Tableau 3 : Matrice de confusion – Modèle des plus proches voisins 

 

3.4.3 Modèle type arbre de décision 

Pour les modèles d'arbre de décision, le meilleur modèle est un classificateur d'arbre de déci-
sion de type assemblage d’arbres (bagging) défini par une profondeur maximale égale à 3, 
une valeur minimale d’individus par feuilles égale à 9 et un nombre d'estimateurs égal à 10. 
Dans ce cas, 50 chutes de blocs sont identifiées (Tableau 4). La valeur de rappel est supé-
rieure à celle calculée avec le modèle de référence (Tableau 6) : plus d'éboulements sont cor-
rectement prévus et la sécurité des conducteurs est améliorée. En même temps, la valeur de 
précision est également supérieure ce qui indique que l’on prédit moins de chutes de blocs 
quand il n’y en a pas ce qui a pour conséquence de moins fermer la route inutilement. 

  
Réalité 

  
Pas de chutes de blocs Chutes de blocs 

P
ré

d
ic

-
ti

o
n

s 

Pas de chutes de blocs 863 96 

Chutes de blocs 81 50 

Tableau 4 : : Matrice de confusion – Modèle type arbre de décisions 
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3.4.4 Modèle type réseau de neurones 

Pour les réseaux neuronaux, le meilleur modèle est obtenu avec un réseau neuronal dense 
composé d’une couche cachée de 32 neurones, dont les entrées sont les 10 dernières pluvio-
métries journalières Dans ce cas, 62 éboulements sont prédits (Tableau 5) avec un rappel 
élevé (Tableau 6). Comme plus d’évènements chutes de blocs sont anticipés par rapport à la 
règle experte, la sécurité de la route est augmentée. Mais la précision du modèle étant plus 
faible, la route est fermée plus souvent inutilement. 

  
Réalité 

  
Pas de chutes de blocs Chutes de blocs 

P
ré

d
ic

-
ti

o
n

s 

Pas de chutes de blocs 805 80 

Chutes de blocs 133 62 

Tableau 5 : Matrice de confusion – Modèle type réseau de neurones 

3.4.5 Comparaison des résultats 

Le  

Tableau 6 : Métriques des modèles plus proches voisins, type arbre de décision, type réseau de neurones et 

expert sur le jeu test des données 

 résume les résultats obtenus pour les trois modèles type machine learning . Nous pouvons 
constater que des résultats comparables ou légèrement meilleurs ont été obtenus avec les 
modèles IA par rapport à la règle experte. L’exactitude pondérée est légèrement supérieure 
pour les modèles de type arbre de décision et réseaux de neurones. Dans ces cas, le rappel 
est également amélioré et la précision est similaire. 

 Plus proches voi-
sins 

Arbres de déci-
sion 

Réseau de neu-
rones 

Expert 

Exactitude pondé-
rée 

0,59 0,63 0.65 0,6 

Rappel 0,21 0,34 0,44 0,3 

Précision 0,53 0,38 0,32 0,37 

 

Tableau 6 : Métriques des modèles plus proches voisins, type arbre de décision, type réseau de neurones et ex-

pert sur le jeu test des données 

4. CONCLUSIONS ET PERSPECTIVES 

Nous avons vu que les modèles d'arbres de décision ou les réseaux de neurones fournissent 
des résultats similaires à ceux de la règle experte avec des compromis différents entre rappel 
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et précision, la règle experte se situant entre les 2. Si nous comparons les jours de fermeture 

de la route prédits par la règle experte et les modèles d'arbre de décision avec les événements 

réels (fermeture de la route), nous voyons que tous les événements ne sont pas prédits mais 

que la prédiction est similaire en terme de fermeture de la route entre la règle experte et les 

modèles d'arbre de décision (Figure 11). Ces résultats montrent donc la capacité de construire 

des modèles prédictifs IA avec des performances similaires à celles des modèles experts. Les 

modèles IA sont développés rapidement et s’avèrent aussi efficaces que les modèles experts. 

Ces outils d'IA peuvent donc être utilement développés pour d'autres sites avec moins de con-

naissances expertes. 

 

Figure 11 : Comparaison des prédictions des modèles, dans leur ordre chronologique, expert et type arbre de dé-

cisions avec les chutes de blocs réelles.  

 

Dans le cadre du projet RINA, outre les développements obtenus sur le site de la RN1 à la 

Réunion, une méthodologie complète a été mise en place pour traiter les données (événe-

ments et données météorologiques) : de la définition des types de modèles IA, à la manière 

d'optimiser les hyperparamètres et les paramètres des modèles, d'évaluer la performance du 

modèle et également de traduire les résultats en termes opérationnels. Ce cadre méthodolo-

gique peut être réutilisé pour d’autres sites avec des données similaires. 

 

Plusieurs perspectives au projet RINA peuvent être dressées. Sur le site d’étude, d’autres 

développements plus poussés peuvent être envisagés. En particulier, d'autres modèles 

d'arbres de décision ou de réseaux neuronaux peuvent être dérivés en fonction de la taille des 

blocs éboulés car les processus de déclenchement sont différents entre les petits et les gros 

blocs. Par exemple, le nombre de jours précédents pris en compte peut être augmenté.  

La question du transfert de ces modèles d'IA sur d'autres périodes avec moins d'éboulements 

(comme la période 2008-2020 sur le site de la RN1 à la Réunion) pourrait être conduite pour 

évaluer la capacité de prédiction des modèles avec beaucoup moins d'événements.  

Enfin, deux sujets sont des thèmes de recherche plus larges au sein de la communauté de 

l'IA : la question de l'explicabilité des modèles d'IA et le transfert des modèles par apprentis-

sage sur d'autres sites. Ces deux sujets sont au centre du projet déposé à l’AAPG 2022 de 
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l’ANR au sein de l’axe H.16 : Interfaces : mathématiques, sciences du numérique – sciences 
du système Terre et de l’environnement. Le projet RINA a en effet permis la construction d’un 
consortium solide. Deux autres partenaires, les laboratoires ISTERRE (Grenoble/Chambéry) 
et le LIRIS (Lyon) se sont associés à cette dynamique. Indiquer le résumé de la pré-proposition 
quand il sera stabilisé. Le résumé de la préproposition soumise est indiqué ci-dessous. 

« Actuellement, la gestion du risque rocheux est majoritairement abordée par le biais de la 
construction d’ouvrages de protection, qui représente un coût souvent démesuré par rapport 
aux ressources financières des communes et opérateurs privés et constitue une solution im-
possible à développer sur l’ensemble d’un bassin de risque. Une stratégie plus durable et agile 
de gestion du risque rocheux serait de prendre en compte l’influence des conditions météoro-
logiques sur le niveau d’aléa et d’organiser la mise en œuvre de dispositifs de mitigation du 
risque en cas d’évolution défavorable (fermeture temporaire d’itinéraires routiers, mise en 
place de protections temporaires, etc.). Ce type de gestion dynamique du risque étant poten-
tiellement associée à un cout socio-économique élevé, sa mise en place nécessite un proces-
sus de décisions motivées. 

L’objectif de ce projet est de développer les moyens de passer d’une prise de décision à dire 
d’expert à une connaissance fine des relations entre l’occurrence d’éboulements et les for-
çages climatiques, pour établir des modèles de comportement et faire de la prédiction. 

Cette problématique est abordée à travers les 3 axes du projet: 

-Fiabiliser la détection des éboulements, notamment avec l’utilisation des progrès technolo-
giques pour l’acquisition de données massives et variées et leur exploitation par des méthodes 
de traitement améliorées, ainsi que par la confrontation des différentes sources de données 
(fusion de données). 

-Développer, à l’aide d’innovations en Intelligence Artificielle (IA), des modèles prédictifs effi-
caces et avec des résultats interprétables par l’expert et donc aboutissant à leur traduction en 
potentiels coûts socio-économiques et règles opérationnelles de gestion du risque. 

-Adapter les modèles prédictifs à de nouveaux sites à moindre coût en appliquant des mé-
thodes IA innovantes de transfert d’apprentissage, ainsi qu’en testant la pertinence des don-
nées issues de dispositifs bas coût pour leur entraînement » 
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Abstract
Rock falls cause numerous accidents around the world. A location where the risk is

increased are roads where, due to modifications of topography, there are unstable bedrocks. One
method of avoiding accidents is closing the road on days the risk is too high. In order to create
the operational code statistical methods are utilized. This study will explore the capacities of
artificial intelligence (AI) in order to better understand rock fall events and to compare the
capacities of different statistical methods to predict the events.

The first step was selecting which site to study. The RN1 from la Réunion was chosen
due to its detailed data set with many events. The data needed to be acquired from different
partners. When the data was transferred it could then be formatted and then analysed. It is
important to do a simple analysis to have a good understanding of the situation and to spot any
early tendencies and possible incorrect data. Subsequently predictive models can be created and
finally analysed in order to draw conclusions.

3 different methods were used to create models, nearest neighbors, decision trees and
NNs. For each method different models were tuned in order to produce an optimal performance
for predictions over the test set. The results were summarized on confusion matrices and the
models were compared between each other and with the operational system.

This work permits us to observe that AI is capable of producing models with great
performance, but further studies are needed in order to use it operationally.
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1. Introduction
1.1. Rock falls

Rock falls occur when a block of rock detaches from a bedrock and descends by free fall
or leaping (Varnes 1978). They are quick and brutal events different from other slope
movements. It occurs due to erosion that causes the mass to depart the cliff. Rock fall is a
problem when it can reach a target. Rocks that fall in the middle of the forest are not studied, but
those which target roads or villages must be studied in order to avoid accidents. This phenomena
is frequently studied, it is hard to have accurate predictions due to its infrequent and
discontinuous nature (Luckman 2013).

Along the years of studies, geomorphologists separated two classes of rock slides based
on their origin (Luckman 2013). The first are primary rockfalls, when the volume detaches from
the cliff and falls immediately after. The secondary rockfalls occur when there is a declaration
between the detachment and the fall. The block detaches from the bedrock, due to weathering
and other processes, but remains stationary until another factor causes it to fall.

Causes of rock falls
Rock blocs fall when the driving force applied on it is greater than the resistance holding

it back. It is not always possible to say what the cause is, as it might be a combination of
different factors. The final factor is simply a spark that triggered the event that was already on
the verge of happening (Varnes 1978). The main factors are briefly outlined in this section.

The removal of support disrupts the equilibrium of forces and may create weaknesses that
cause blocks to detach with time. This may happen for various reasons like erosion, previous
movements of the slope or human activity. Additional charges will also disrupt the stability of
the bedrock. Humans can be responsible for this by constructing structures, leaking water from
pipelines, sewers, canals and reservoirs, and other activities. Natural agents that create
surcharges include, weight of precipitation, pressure caused by rain on cracks, freeze thaw
cycles, clay expanding due to hydration, accumulation of volcanic material and vegetation.
Another factor is vibrations of the rockbed. This includes natural tremors like earthquakes and
also the ones caused by humans like explosions and drilling. Rock falls are also caused by the
low resistance of the cliff. This can be caused by its formation or variations with time. Initial
weaknesses include: the geological composition, the resistance of the materials, how are the
different materials aligned, how they interact with water, presence of faults and other
discontinuities, form of the slope and how steep it is. Changes with time are linked to weather
conditions. Rain is one of the main factors of erosion and reacts with many different minerals
causing them to erode.

Even though all of those factors are important causes, three of them are usually described
as the main triggering factors: rain, freeze-thaw cycles and earthquakes. This is true for primary
and secondary rockfalls, but it is conceived that secondary rockfalls are triggered by a wider
range of events (Luckman 2013).
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Protective elements
Rock falls are destructive events that cause damages and casualties. Diminishing the

impact caused by this phenomena can be done by avoiding areas with high risk, by eliminating
the hazard and by constructing protective structures (Wyllie 2014).

Blocks fall from bedrocks with steep slopes. Knowing that there is a possibility of masses
of rock falling from the bedrock, avoiding building roads and houses beneath it would avoid
negative consequences. Paths that are already built can be redirected, protected or temporarily
closed when the risk is higher (or a combination of all these solutions).

Detailed analysis of cliffs may present volumes which are unstable and with high
probability of collapse. In order to avoid damage it can be purged. This way they can be removed
in a controlled manner and will not cause any negative impact. It is important to note that, by
removing unstable blocks the bedrock behind it may become unstable.

Protective structures are separated into two groups, active and passive. Active structures
will hold blocks on the cliff and prevent them from falling. Passive structures will stop or deviate
the rocks that fell from the cliff in order to prevent them from reaching the stakes.

Active protective structures are implemented directly on the bedrock. The most common
is the implementation of a steel net that is attached on the bedrock with soil nails [Figure 1.a].
Soil nails can be used without the net in order to hold single blocs.

Passive protections are generally walls or ditches to stop the propagation of the rocks.
This wall can be a steel net Figure 1.b, similar to the one used for active protection, but can also
be an embankment which could be made of gabions, reinforced soil or a mixture of materials
Figure 2.a. A ditch can also be excavated in order to stop the blocs on their path Figure 2.b.

Figure 1 : Steel net protective element (a) fixed on the bedrock by nails and (b) located at the base of
the bedrock
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Figure 2: Passive protective structures at the base of a bedrock. (a) Embankment made of gabions (b) ditch caved
and embankment raised with material of the ditch.

1.2. Data analysis
Data analysis is observing a dataset and using it to understand the behaviour of a cliff. It

helps to find patterns and trends, which may be used to predict future events such as rock falls.
This study will be using Artificial Intelligence (AI) for predictions. AI is a section of

computer sciences that attempts to create machines capable of performing tasks that require
human intelligence. This term is evolving with time and scientists aim to create more and more
complex systems. One of the many challenges is providing machines with the capabilities of
having creativity and producing things like screen plays.

One aspect that has been deeply explored is pattern recognition. The capability of looking
at an information, receiving new information and fitting this new information inside what is
already known. Many different types of models exist in order to do this. Three of those methods,
nearest neighbors, decision tree and neural networks (NNs), will be explored in this work.

The branch of machine learning involves pattern recognition, but it differentiates itself by
including the concept of learning. It works with the idea of making predictions, comparing their
results with the actual values and improving upon them. This is an interactive model. An
example of machine learning are NNs and some types of decision trees which will be elaborated
on section 3.1.3.

1.3. Aim of the work
As technology advances statistical methods grow in performance, speed and applicability.

Classical methods have already been used many times to better understand rock falls and the
conditions which trigger it. This study aims to:

1. Better understand the causes of rock falls. By creating predictive models based on
past events it is desired to better understand which are the most important factors
and at what intensities the blocks will fall.
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2. Compare the performance of AI with other methods and its capabilities for
predicting rock falls. This includes the precision of predictions, the applicability
of the models and the time to produce the models.

This project was a collaboration between different teams with those objectives. The
groups involved were: CEREMA, GEOLITHE, BRGM, Université Savoie Mont Blanc. The first
3 groups mentioned had expertise on rock falls while the other was expert in artificial
intelligence and data analysis. Hermann Courteille (USMB) [Courteille, 2021] produced the NN
models and did a qualitative analysis of the data.

I processed the initial data combining the data sets and eliminating superfluous
information. I also analysed the cliff in order to describe it in a way that could be inserted on a
data analysis and possibly a predictive model, additionally I created alternative predictive
machine learning models, using decision trees and nearest neighbors, to compare with the deep
leraning models created by Hermann Courteille.

2. Study case
A choice of the study case needed to be made. A well documented site with years of data,

and a good number of events is required. Initially 6 different locations were proposed: RN1 (la
Réunion), Val d’Arly (between la Savoie and la Haute-Savoie), la Saulcette (Savoie), cliff from
Saint-Eynard (Isère), Mont Faron (Var) and la Rochaille (Alpes de Hautes-Provence). The two
first sites collect the data about the events that reached the road while the others monitor the cliff
and observe when blocks break off.

The RN1 (Route National 1) from the Réunion was finally chosen because of the
numerous well documented rock falls that reach the road and the longest period of observation. It
has also been studied previously by CEREMA and Geolithe and experts were able to help with
the understanding of the cliff behavior. One of the difficulties of applying traditional methods to
rock fall prediction is the rarity of the events. The RN1 is the location with the greatest intensity
of rock falls, and this will provide a richer data set.

2.1. La Réunion
La Réunion is a French island on the south east of Africa, as shown on Figure 3. This

French department has a population of 850 000 and a surface area of 2 512 km² (“Découvrir La
Réunion” 2020). It has a tropical climate with higher temperatures close to the coast and lower
temperatures inland as the altitude increases Figure 4. On the coastal area mean temperatures
vary from 30° in summer to 24° in winter. Temperatures, in this region, are always superior to
freezing temperatures which indicates that freeze-thaw cycles will not be taken into account as a
potential triggering factor.

Rain is not equally distributed along the island as displayed by figure 5. The West has
much higher volumes of rain. This is due to the volcanoes that block the clouds from continuing
to the East. The topography of the island is strongly linked to volcanic activity as it was formed
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by two volcanoes: le Piton des Neiges et la Fournaise. This means that the island resembles two
cones with the points being the peaks of the volcanoes.

The Piton des Neiges is the oldest and was active 2 million years ago. It created a first
lithological structure which is composed of alternating layers of basalt, crystallized magma, and
scories, sedimentary rock. Both of those layers have thicknesses below 3 meters. Dykes are also
abundantly present on this structure due to volcanic activity. This structure is called the inferieur
structure.

The volcano became dormant and a stage of erosion started changing the topography of
the island. Sediments also started occupying the bed of the valleys that formed a new geological
structure. This is called the intermediary structure.

About 1 million years ago the Fournaise appeared and a new structure, similar to the first,
started to appear. The main difference between both volcanoes is that, as many valleys were
present, the magma was more concentrated and early layers reached thicknesses 10 fold more
important than the original. This corresponds to the superior structure that covers the majority of
the island.

With time, a new process of erosion molded the region. As the inferieur structure is older
it suffered through more weathering due to the sea and the rain and erosion favored those spaces.
All of those steps are illustrated in Figure 6.

Figure 3: Map showing the road
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Figure 4: Mean annual temperatures of the island la Réunion

Figure 5: accumulated annual rain of la Réunion.
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Figure 6: Lithological evolution of la Réunion

2.2. Temporal data
Temporal data include the meteorological information (daily temperature and rain), and

also the rock falls and their description (date, location along the road and hitted lane,
approximate volume). The data sets contained the rainfall accumulated in millimeters every 24h
on 3 different points along the road. Meteorological information was also acquired from stations
on the 2 cities which are connected by the road, Le Port and Saint-Denis. Data from those
stations are available on the web site https://www.historique-meteo.net/. They provide daily
values of the maximum and minimum temperature and the daily rain. The rock falls are listed in
a table with all the information regarding each event as described in the previous section.
Temporal analysis will consider daily intervals as it is the shortest period of time we have all the
information and operationally is what makes more sense as the rules for closing the road were
created taking into account daily intervals.

There were a total of 5 different stations measuring values of the daily rain, 3 along the
road and 2 on the cities. All 5 values are extremely correlated with a value superior to 0.85 for all
cross correlations as expected. Previous studies used the maximum value between the 3 stations
on the side of the road. This is done as the maximum value is the one that will probably cause a
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rock fall. Only the 3 stations along the road are taken into account as they are the closest to the
road.

The temperature was only available from 2009 onwards. The correlation between both
stations was 0.97 for the max and min temperature so the values of Saint-Denis were used.

Rock falls were on a table with a list of events with the description of each event. For the
majority of the models the objective was to predict if there was an event or not, so a table of days
was formed with the data and a 1 was indicated for days with a rockfall event or a 0 if there
wasn’t.

3. Preprocessing, data description and previous work
The analysis will treat the problem temporally, but a spatial understanding could be

useful for a better understanding of the behaviour of the cliff. The cliff did not change
significantly during the studied period. The only changes that will be considered were the
structures built in 2008 to protect the road as they had a significant influence on the probability
of blocks hitting the road. This leads us to study the periods before and after the construction as 2
different data sets.

The data can be studied in 3 different formats: temporally, spatially or both. Rock falls
occur on a certain time and a certain location and statistical models can help to predict both of
them. This study will only study the rock falls in function of the time. Being able to predict the
date of the event permits its temporary closure in days the risk is higher in order to avoid
accidents. A model that combines spatial and temporal elements would not be ideal as the data
set contains few events and adding dimensions would increase this problem.

Even though the predictive models will be used for the predictive models a spatial study
was made to better understand the cliff. Different descriptive values were calculated to try to
understand which characteristics of this bedrock increased the risk of blocs detaching and
reaching the road.

The time set for each entry is on the order of the day. This permits an easy comparison
with the operational code as the closure of the road is dictated by the behavior of the rain
accumulated in a period of 24h. Grouping the data by month would facilitate finding tendencies
but would make it harder to apply the model for the operation of the road.

In this study, we used existing data (1- 4) and had to calculate other (5 -7) :
1. Information about the rock falls that occurred between 1999 and 2018. For each

event the table gave the date and time of the event, the point it fell along the road
(PR), the lanes affected, the mass that fell and the consequence of the event.

2. Values of the daily rain from 2000-2020 collected on three different stations
(Figure 3)

3. Location of the protective elements along the road before and after the
constructions of 2008.

4. Geological characteristics of the bedrock along the road
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5. Standardized area of a profile of the cliff every 10 m
6. Standardized Concavity Index (SCI) of a profile of the cliff every 10 m
7. Topographic Wetness Index (TWI) of the top of the cliff every 10 m

3.1. Previous works
Many works have studied the temporal occurrence of rock falls using statistical methods

[Damato 2015, Rosa 2012, Westoby 2020] and some of those studied specifically the occurrence
of rock falls at the RN1 (Réunion Island) as it is a site with many well documented incidents.
Two studies of rock falls at the RN1 are highlighted hereafter: an operational study and a
statistical study.

3.1.1. Operational rules for road RN1 maintenance
The most relevant studies of rock falls temporal occurrences at RN1 were made in order

to create rules for closing the road in order to avoid accidents [Batista, 2016]. The rules are
updated with time as better performing rules are created and as conditions change, notably the
installation of protective structures that help diminish the number of blocks that hit the road.

Each version of the code is composed of 2 rules. The first indicates a maximum amount
of rain in the former 24 h and the second indicates the maximum amount of daily rain in the
former 48/72 h. Two rules will be highlighted in this work, the R7 and the Rps4b.

The R7 was developed through a study in 2003 and started being applied in 2004. It was
based on data acquired between 1998 and 2002 and was developed after analysing a study made
by CEREMA. The R7 dictates that the road will be closed if:

● The daily rain in the former  24h is superior to 15 mm
● The daily rain in the former 72h is superior to 30 mm

This rule was able to reduce by 30% the duration when the road was closed and
maintained the same intensity of 0.151 blocks falling per day on the period that the road is open
leading to the road being closed during 11% of the time.

In 2009 a new suggestion was presented. As the protective structures were built, and
dimensioned to reduce the number of blocks that hit the road by almost 80%, less restrictive
rules could be used in order to have longer periods of allowed traffic on the road whilst
maintaining a similar level of risk for drivers. The Rps4b dictates the road will be closed if:

● The daily rain in the last 24h is superior to 30 mm
● The daily rain in the last 48h is superior to 50 mm

This permits the road to be closed during only 5,8% of the year, about half of the time
given by R7. Between 2010 and 2015, the intensity of rockfalls per day while the route was open
was inferior to 0,015 being less than 10 times the historically accepted risk. This work provides a
basis of what can be done on this case study with two expert rules.
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3.1.2. Statistical Study of  rock falls on the RN1
Many different factors are known to cause rock falls. The two main ones are the pressure

caused by water infiltrating and freeze-thaw cycles. A study made by Delonca [Delonca, 2014]
analysed the correlation between the different meteorological factors and rock falls trying to
determine which factors are linked to rock falls and which one is the most important.

The general difficulty of studying rock falls is the scarcity of data, making it difficult to
find important correlations between the event and the meteorological condition. A new method is
proposed in order to find correlation when events are rare. The proposed methodology weights
the number of rockfalls by the probability of occurrence of the studied triggering factor and this
is done by grouping the days based on the descriptive feature, calculating the probability of
having a day with an event inside each grouping. The final step is a linear regression analysis
which is performed to compare the magnitude of the triggering factor and the probability of
occurrence for each value. The grouping is arbitrary but two rules should be followed, the
number of days in each grouping should be superior to 5 and each grouping should contain at
least one event.

This analysis was made for the rain, the accumulated rain, the maximum temperature, the
minimum temperature and the difference between both. For each factor studied it would also be
compared with the value of the previous days as the triggering factor may take some time to
detach the block. It is important to note that the correlation between all of those factors and the
presence of an event was calculated, but only the correlation between the rain and the events was
seen as sufficient. Figure 7 shows the values of the cross-correlation coefficient between the
daily number of rockfalls and the daily rainfall at RN1 (La Réunion) for several delays and how
the most significant coefficient is obtained for the rain from the previous day.

Figure 7: Cross-correlation coefficient between the daily number of rockfalls and the daily rainfall at
RN1 (La Réunion) for several delays. The significance threshold, equal to 0.031, is represented by the

dashed lines. Source: Delonca et al. (2014)
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The proposed model also found the correlation with the rain and, as the classical method,
indicated that the previous day was the most directly related to rock falls, but with the proposed
method other correlations appear. The table ? shows the maximum correlation for each feature
and it is interesting to see how the temperature, specially the minimum temperature, is related
with the rock falls almost as much as the daily precipitation. In most cases this could be due to
freeze thaw cycles, but it is not likely as temperatures in La Réunion do not descend below zero.
An explanation could be the correlation between the temperature and rain as both are seasonal
events.

Table 1 Correlations between the chosen meteorological factors and the daily number of rockfalls; results
obtained with the proposed method on the real databases. Only the maximum correlations are presented

here.
Source: Delonca et al. (2014)

3.2. First analysis of rockfall events

Before creating models it is important to understand the behaviour of the cliff based on
the data. Basic statistics and visual representations can help with understanding the relying
dynamics of events and limitations of results.

Observing the times series of daily number of events(Figure 8) the difference before and
after 2008 is easy to see.

It is also possible to observe a gap in 2004 as part of the data seems to be missing for this
year. There are no remarks of any important changes during this year that would cause such a
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change in the behaviour of the cliff and previous works used data from this year with no special
treatment. It is believed the data received is incomplete so the period with no data will not be
considered. Thesecond part after 2007 also sees a significant reduction in the number of events.
This can be associated with the beginning of construction of protective structures and this change
will also be considered.

Besides, the number of events also follows a seasonal nature. The values peak between
December and January, the same moment as the rain peaks as observed in Figure 8.

Figure 8: Evolution of the amount of rain and the number of rockfall in fonction of time

A representation of the number of events along the road before (FIG à ajouter??) and
after the construction of protective structures allows the visualisation of the difference of the
amount of events, but also their spatial distribution. Observing only the events that occurred
before 2008, some zones are noticed with fewer events. The most noticeable is the region before
pr 3+500. This can simply be explained by the fact that this region already had protected
elements installed (Figure 9).
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Figure 9: mass of those rock falls in fonction of the location and histogram representing their frequencies.

3.3. PCA analysis of rockfall events
Présenter données sur lesquelles la PCA est faite? Pourquoi (P0, P1, P2, P3, P4) ?

Pourquoi  réduire la dimension dans ce cas précis?
Principal Component Analysis is a dimension reduction method that creates new features

based on the existing ones. It creates the same amount of features as previously existed and by
combining the different features is capable of creating new ones that are more adapted to
explaining the data in fewer dimensions. The objective is being able to plot and create models on
lower dimensions.

With the new variables it is important to observe how much of the variance each feature
is capable of explaining and consequently how effective the reduction of dimensions is. For the
data before and after the implementation of protective structures the figure 10 (a) and (b) was
created based on the rain of the previous 5 days (P0, P1, P2, P3, P4). Both bar graphs are
extremely similar, with all values being superior to 10% indicating that ideally all features
should be considered. The first analysis that should be made is with the two first components.
Together they explain 60% of the variance.
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Figure 10: PCA images, percentage of explained variance by different variables for (a) the data before
constructions and (b) data after construction of protective elements. Representation of importance of

different variables for the principal components 1 and 2 for (c) the data before constructions and (d) data
after construction of protective elements. Distribution of the data points along the principal components 1

and 2 for (e) the data before constructions and (f) data after construction of protective elements.
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The PCA Graph represents how much of each variable is explained by each component.
Figure 10 (c) and (d) shows how PC1 and PC2 are formed. We observe that all 5 features seem
spread on the 4 corners. No two features are clustered together.

Plotting the data on the two principal components with the events being colored it is
possible to look for clustering of events and try to identify any clustering. Figure 10 (e) and (f)
shows a concentration of points close to the origin. This makes sense as the majority of the
original data is also clustered as the majority of the days there is no rain. The main objective of
this exercise was to try to identify a visual separation between the days with rock falls and the
others. Neither of the graphs provides a clear separation that could be exploited.

3.4. Spatial data
Having the topography, the geology and the information about the protective elements

installed along the cliff values were assigned, along the road, to represent the geomorphological
characteristics of the cliff. This spatial study aims to improve the understanding of what
characteristics of the cliff are linked to the blocks reaching the road.

The protective elements were simply described as present or not present for each point of
the road. Various protective structures are used for different parts of the road and they can also
have different dimensions depending on the demand, but those were not considered. The final
separation before and after the constructions are shown in the figure 11.

Presence of protective elements before constructions of 2008

Presence of protective elements after constructions of 2008

Figure 11: protection zone (0 no protection/ 1 with protection)
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Taking into account the geology was done by defining norms to separate the cliff into
different zones. The criteria was chosen in order to find zones which have similar geological
structures. The cliff is composed of three different geological structures: inferieur, intermediary
and superieur, as described in section 2.1. The inferieur and superieur structures are present
throughout the cliff. The intermediary is more ponctuel. The chosen criteria is as follows:

- Zone 0 : predominance of the inferieur structure
- Zone 1 : predominance of the superieur structure
- Zone 2 : presence of the intermediary structure

The inferior and superior structures are similar, but have different behaviors, as the
inferieur is more compact, leading to different resistances. The présence of the intermediary
structure leads to irregularities that could cause rock falls. The separation was made by analysing
the different images taken of the cliff. The final separation is found in Figure 12.

Figure 12: Geological zoning

Two topographic indexes, the standard area and the Standard Concavity Index (SCI), are
calculated from profiles of the cliff. The standard area is a value that normalises the vertical and
horizontal dimensions, as shown in Figure 13, and calculates the area under the cliff []. Smaller
values tend to indicate a steeper cliff while larger values tend to indicate a smoother cliff.

Figure 13: normalisation of dimensions for the calculation of the (a) standard area index and (b)
SCI
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The SCI is similar to the standard area index as both involve normalising the dimensions
and calculating an area, but in this case the normalisation is different and the area calculated is
between the cliff and the straight diagonal line that joins both extremities of the cliff []. This is
illustrated in Figure 14. Comparing both formulas it is observed that profiles with a small
standardized area will have a large SCI value and vice versa.

Profiles perpendicular to the road were extracted from the DTM map every 10 m along
the road. A total of 1122 profiles were extracted and analysed. This was done by transferring the
DTM map to Cloud Compare and extracting sections of the cliff over the trace of the road seen
in Figure14.

Figure 14: RN1 trace used for the extraction of the topographical profiles

In order to calculate both indexes it is necessary to estimate the highest point the block
may depart from the cliff and arrive at the road. This was done with a specific developed code.
The program looked for the extremity of the road closest to the cliff as the arrival point of the
blocks and for the point from which blocks fell. The second one is complex as different people
have different interpretations as one segment can have more than one cliff. The last point with a
strong slope, but without any large segment in front of it with a weak slope, would be considered
the departure point. Some examples of the profiles are shown in Figure 15.
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Figure15: 3 examples of profiles along the road with the estimated departure point and arrival
point of the detached blocks
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The code calculates the slope for each point and finds the arrival point by searching for
the last point with a weak slope, with a magnitude below 0,1, and also with a vertical value
between 8 and 12,5. There are 2 criterias for the departure points. The first is that it has to be
steep, with a gradient stronger than 2, and also it cannot have a long distance with a mild slope,
gradient below 0,5.

The coordinates for the departure points were exported to QGIS where they were
combined with the contour lines in order to better examine the ensemble of points found by the
program. The result is shown in Figure 16. The points which are in the middle of the sea are
when the program was not capable of finding a departure zone. This phenomenon is present on
the exit of both rivers. Generally the program gave consistent results that are seen by the
continuity of points representing the departure points. Two zones were selected to show the
discontinuities that are present. On both zones we observe the presence of many cliffs over one
another and all of them are possible sources of rock falls.

Figure 16 : combination of the departure points found by the program and the contour lines. Two
zooms to demonstrate more problematic regions, just before the first river and on the beginning

of the road
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Based on the calculated points a manual line was traced in order to have more spatially
continuous points and therefore, more continuous values should be expected for the indices
calculated for the topographic and hydrological description. The final points used still had some
discontinuities, but less of them and, moreover, there aren’t outliers as seen in the image above
(Figure 16). With those points, the equations shown on Figure 13 are applied and Figure 17 can
be produced. As noted previously, both values seem mirrored, higher values of Standardized area
leads to smaller values of SCI.

Figure 17 : Variation of the topographic indices along the road.

The fifth and last value calculated to describe the cliff was the Topographic Wetness
Index (TWI). It is calculated with the topographic map and indicates the concentration of water
of a point according to the direction of runoff. Q-GIS was used to calculate the value for every
10 m square inside the watershed []. In order to have one value for the different points it was
decided to use the value for the point from which blocs depart as generally cumulated waters
behind the cliff infiltrates and causes pressures that cause blocs to detach. The final result can be
seen in Figure 18.
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Figure 18:Variation of the TWI along the road.

This spatial study aimed to better understand the characteristics of the cliff which were
related to the rock falls. Different values were plotted in function of the pr. The clearest
correlation is that in zones with protection there are less rock falls. Observing Figure 9 and 11 it
is possible to observe the difference of the amount of rock falls before and after the addition of
protective elements along the road. Analysing the data before the constructions of 2008 the data
already showed that the initial section (1+700 - 3+500) the number of events was visibly lower.

The lithological structures do not seem to be strongly related with the distribution of
events, but a deeper study could show some correlation. On The other hand, there are some
correlations between the topography and the number of events. For values of the standardized
area (Figure 17) closer to 0 (example 4+000 - 6+000) more rock falls tend to fall (Figure9). The
region with a higher standardized area close to 0,5 ( example 6+200 - 7+500) has fewer rock
falls.

This spatial analysis shows how the number of rock falls are related to a number of
different characteristics of the bedrock. A spatial analysis could be done using those features as
the input in order to predict the location a rock will fall.

4. Methodology used for prediction models
AI was used to create models that will predict the probability of rockfall that reach road.

if rock falls will reach the road based on the data. There are various ways to create prediction
models and various criterias to measure their capacities. The objective is, given a certain amount
of information, what will happen in another case. All the data could be given to the program as
an input, but then it would only be possible to evaluate the model based on the information it
used to produce the model. One solution is separating the data into two parts, training data and
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test data. The first is used to train the model based and the second to test the capabilities of the
model. In this section, different types  of models and the criteria will be explained.

4.1. Model
Artificial intelligence contains a multitude of different types of models. Some are more

complex than others, but they are all adapted to different types of problems. Different types of
models will be created and compared between each other and the rules created to control the
flow of the road.

This problem could be solved as a regression, predicting the mass that fell each day, or as
a classification problem, solving simply for the presence of an event or even bining the number
of events. The simplest is creating classification models as it is closer to what is done
operationally and also the difficulty of not having any event is even more drastic.

Three types of classification models were chosen: nearest neighbors, decision tree and
Neural Network. For each one, various tunings are needed in order to optimise the model.
Python's library scikit learn and tensorflow  were used to generate all predictive models.

4.1.1. Nearest Neighbors
This is the simplest of the methods but it is also quite effective. The idea is that when a

new point of data is added, the model will analyse the data already available and observe
a specified number of points which are closer to it. This can be visualised in a 2D space
as in Figure 19 but can be translated to higher planes having each dimension a feature. In
order to do so it is important to scale all the variables.

There are many variations of this method. The simplest one is predicting the point
chosen to be the most current between its neighbors. For example, observing the figure
with 3 neighbors (plain circle) it would predict the missing point is red as there are 2 red
points and one blue. If we changed and considered 5 neighbors (dotted circle) the point
would be blue.

Another possibility considered in this work is weighting inversely to their
distance. This means that closer points will have a larger weight. This means that, for 5
neighbors the point could be predicted as red as they are closer. This is an additional level
of complexity that can help to improve the performance of the model.

The third variation adopted was weighting the events. As it may be desirable to
predict an event when there isn’t in order not to miss some events and as nothing
happening is much more frequent than having an event it could be desirable to give a
greater weight to one class rather than another.
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Figure 19: representation of data set to illustrate nearest neighbors model

The parameter that was tuned for each one of the different types of models is the
number of neighbours that would be taken into consideration and weighting strategies.

4.1.2. Decision Tree
This model consists in a series of binary logical decisions in order to choose which

category it will predict. Each decision is based simply on one of the features. One example is, if
the rain of the previous day was superior to 30mm. This rule can lead to other branches or to the
final decision. Four different types of decision tree models were explored.

The first and simplest is a simple decision tree classifier. During the training stage the
model will create rules that maximize performance. Adjusting the value of the hyperparameters
can help to avoid the model overfitting, fitting too perfectly to the train set and not only finding
general tendencies, or underfitting, not being able to find the general tendencies of the model.
Those parameters are the maximum depth of the trees, the minimum number of samples in each
leaf  and the weights of each class.

The maximum depth of the model stops it from growing excessively and overfitting. The
minimum number of samples of a leaf stops branches extending with few samples once more
avoiding the model overfitting. The class weights is a form of giving more importance to
detecting events. As for the third variation of the nearest neighbors it is interesting to give more
importance to predicting the maximum number of events than predicting an event that did not
happen. If both classes had the same weight and a leaf had 21 days with no event and 10 with
events it would predict there would not be an event. If the weight of the class with rock falls was
3 times larger it would predict that there would be an event.

The other decision tree classifiers, bagging, random forest and histogram-based
gradient boosting, are produced by combining different trees. The idea is to create a more
flexible model.
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Bagging classifier starts by separating the training data into smaller sets randomly
created. It is important to note that the same event can be present in different sets. This final
group of sets is called a bootstrapped dataset. Decision trees are formed for each one of the
subsets. The model is then a combination of those trees. The prediction will be the mode of the
predictions.

The third method is called random forest and is similar to bagging but with one
variation. During the process of creating the decision trees, instead of creating a rule based on
one of the total number of variables, two variables will be selected randomly and the decision
will be made between those variables. This process is done for each branch.

As for the simple decision tree classifier the maximum depth and minimum number of
samples of a leaf will be optimized but for those methods the number of trees/ estimators will
also be tuned. It is important to note that overfitting of the estimators is not a problem as the
combination of them annulates those variations.

The last method is histogram-based gradient boosting. This method creates decision
trees sequentially boosting the importance of points depending on previous error. The training
process starts with the creation of a tree with one leaf, comparable to a dummy classifier, a
model that will always predict the most common class. The residual is calculated for each
element and a new tree will be created with the objective of predicting the residuals. The new
predictions are now a sum of the dummy classifier with the predicted residuals multiplied by a
learning rate. This process repeats many times in order to improve the quality of the result. As
this method improves from previous mistakes this is considered machine learning.

In order to optimize gradient boosting the same parameters will be tuned as for bagging
and random forest, but the impact is different. Gradient boosting generally thrives with
underfitting decision trees with each one correcting the previous ones.

Figure 20 : Representation of simple decision tree
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4.1.3. Neural Network (NN)
Receiving its name after the human brain this method mimics its logic having a series of

neurons that activate each other. The simplest model is created by a first layer, with one neuron
per feature, a series of layers with various neurons and a final layer with the output that gives the
confidence of the model for each classification (Figure 21). Each neuron receives a value from
the previous layer of neurons, transforms the value and sends this value to the next layer. The
value each neuron from a layer receives is a linear combination of a number of neurons from the
previous layers (Figure 22). For each neuron there will be one weight for each neuron on the
previous layer that is connected to this neuron and a bias. Each neuron is not necessarily linked
to neurons from the previous layer. This linear combination is the input value that will than be
inserted on an activation function that will transform it into a value between 0 and 1. This value
will then be passed on to the next layer until the last layer which will provide the probability the
value is a certain class.

Figure 21: example of a Neural Network structure

Figure 22: representation of a neuron (x_i the input, y output, Sigma for the sum of the inputs,
and g is the activation function)
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We say that a neural network learns from data because of its operating steps.
First, all trainable parameters of the model, like weight of connexion and biases are

randomly initialised.
After, the model improves itself  to minimize a loss function that measures the error between
predictions and true labels. This is achieved by iterating over each sample of the train dataset:

- A prediction is made by the actual model configuration, then the loss is computed  and its
gradient with respect to all trainable parameters.

- Model configuration (all weights and biases) is upgraded, in the direction of gradient with
a scaling factor called the learning rate.

These two points, forming a learning step, are repeated over the entire dataset and are called a
training epoch.

After one epoch, model capabilities   are evaluated on the validation dataset. Depending on the
results, some hyper-parameters could be adjusted like the learning rate.
To learn correctly, we repeat many epochs to reach a good predictive model

There are many parameters that can be optimized for each problem like the structures for
the intermediate layers, changing the activation function, the error function and also the learning
rate.

This part of the work has been carried on by LISTIC laboratory. They decided to use two
types of Neural Networks s:

- Dense Neural Network (DNN). are characterized by having all the neurons from a certain
layer connected to all neurons from the previous and following layer. Figure 21is an
example of a DNN model with all neurons connected to all neurons from neighbor layers.
The hidden layer was formed by one or two dense layers using a logistic regression
function to activate the neurons in order to observe non linear behaviour of the data.

- Convolutional neural networks (CNN). They are famously used to identify patterns on
images. Convolution can be used to identify edges, curves and even more complex
patterns. The convolution acts like a filter that enhances certain patterns. On images, the
convolution kernels, called filters, are matrix while vectors on 1D times series, as for our
dataset.

4.2. Performance metrics
A common way to observe the performance of a classification model is the confusion

matrix. It compares the prediction and the actual values as shown by Figure 23. In order to
compare different models, some values, representing the performance of the matrix, are
calculated. Many different indicators may be used. The ones chosen were: accuracy, balanced
accuracy, precision, recall, and .𝐹

β
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Figure 23: example of a confusion matrix with 2 classes: positive and negative

source: https://towardsdatascience.com/visual-guide-to-the-confusion-matrix-bb63730c8eba

The most classic value that measures the performance of a classification is the accuracy
(eq?). It calculates the percentage of results that have been correctly classified. The main
disadvantage of this method is when the classes are not equally present. For example, if 80% of
the data were on class A a dummy classifier would always predict A and the accuracy of this
model is 80%. This example shows the importance of comparing different indices to better
understand the performance of a model.

An alternative is the balanced accuracy (eq?(Pb reference). It is not as intuitive as the
accuracy, but the most important is that as the model better identifies the classes the value grows
closer to one, and a dummy classifier will always score 0.5.

Two important values are the precision (eq?) and the recall (eq?). The precision is the
probability that the event occurred when the model predicts it will happen. The Recall is the
probability that the model predicted an event given it occurred. On operational terms for road
management, augmenting the recall augments safety, as more rock falls will be predicted, and
enhancing the precision will be economically important, as it will reduce the days the road is
closed without any occurence of rock falls. It is important to have those concepts in mind as
enhancing one will generally diminish the other.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃+𝐹𝑁

= (recall +  ?)/2𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   𝑇𝑃
𝑇𝑃+𝐹𝑁 + 𝑇𝑁

𝑇𝑁+𝐹𝑃( )/2
An interesting indice to represent the performance of a classification model is the 𝐹

β

(eq?). It is based on the precision and recall explained earlier and the analyst can tune the value
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of giving more or less importance to the precision or to the recall. The greater the the greaterβ β
the importance of the recall.

𝐹
β
 =  (1 + β2) · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

β2·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

5. Results of models on RN1 data

This section will present the performance of the different models. Firstly the performance
of the operational code, following the results of the different models produced by artificial
intelligence described in the previous  section 4.1.

Training and validation general settings

As the period before the construction of protective elements (2000-2007) had more
events it will be studied more in depth. It was decided that the period between the 01/01/2000
and the 25/02/2004 would be used to train the model while the data between 02/01/2005 and
27/12/2007 would be used to test the model. This permits us to avoid the year of 2004, that is
distinct from the others, maintain temporal continuity of training and test data and also similar to
reality as the operational code, that will be compared to our results, was also based on the events
previous to 2004.

The predicted value, the output, was whether there would or would not be a rock reaching
the road (0 when no rock fell, 1 if one or more rocks fell). One DNN model experimented with
an additional class (0 representing no rock falls, 1 representing 1 rock fall, 2 representing more
than 1 rock fall).

The input data for those predictions was the daily rain of the day (P0) and of the four
previous days (Pi for i between 1 and 4, where “i” is the number of days before the studied date).

5.1. Operation code
The operational code takes into account the rain of previous days and uses it to define if

the risk of blocks reaching the road is too high. The code studied is the R7 that dictates the road
will be closed when:

● The daily rain in the last 24 h is superior to 15 mm
● The daily rain in the last 72 h is superior to 30 mm

This means that, in a certain instant, if the rain in the last 24h was superior to 15 mm the
road will be closed, and if in the last 72h there was a period of 24h when the rain was superior to
30 mm the road will also be closed. As we are working with daily data a small adaptation must
be made. It will be considered the model predicts an event if:

32



● The daily rain in the previous day is superior to 15 mm
● The daily rain in one of the previous 3 days is superior to 30 mm

This can be simplified as follows: P1≥15 ou P2≥30 ou P3≥30. With this model we can
observe, for each day, the rain of the 3 previous days and know if the model would predict that
there are or are not rocks falling on the road. A confusion matrix is built for the test set as shown
by Figure 24. Out of the 1085 days of the test data set, the model predicted that 104 (in table)
days would have an event and about ⅓ of those predictions were correct.

Actual

0 1

Predicted 0 872 104

1 71 38

Figure 24: Confusion matrix for the operational model for the test data set.

accuracy 0.84

balanced accuracy 0.60

precision 0.35

recall 0.27

F1 0.30

Table 2: Indices calculated based on the confusion matrix to quantify performance of the
operational model.

For this confusion matrix all the indices described in the previous section were calculated
and are presented on table 2. We can observe that the accuracy is quite high, which is expected as
the data is not balanced. During 87% of the days there are no rocks falling along the road. This
means that even a dummy classifier could have a better score than the operational one. On the
other hand, we know that it has its value as it is capable of correctly predicting 38 events.

5.2. Nearest Neighbors
The first and simplest model created is nearest neighbors. This method predicts if there

will be rocks falling along the road based on similar days in the past. In order to produce the best
model the number of neighbors, that will be taken into account in order to predict new data
points, will be optimized. This is done by varying this number and observing the result of the
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model for the training and test sets. The indice considered to measure the performance of the
model is the balanced accuracy. The number of neighbors is varied between 1 and 50 and the
result is presented by Figure 25.

Figure 25: Balanced accuracy of the models for training and testing data and its variation with
the number of neighbors.

With one neighbour we have the maximum performance of the training data but the
difference between both data sets is significant indicating that the model is overfitting. As the
number of neighbors decreases the performance of the training data also decreases, becoming
closer to the one of the test data. The balanced accuracy for the test data set also decreases with a
larger number of neighbors, but much slower maintaining it’s value approximately 0.6. The value
of 15 is adopted as the model does not overfit. Comparing figure 24 and figure 26 we observe
that the Operational code is capable of correctly predicting 8 additional rock falls, but at the cost
of incorrectly predicting 77 additional events.(indiquer les conséquences pour la gestion de la
route)

By comparing the indices calculated for this model and the operational model it is noticed
that the accuracy has increased and is even slightly superior to the dummy classifier, which has
an accuracy of 0.866. The precision also increased being superior to 0.5, meaning the majority of
the times the model predicts a rock will fall it actually happened. A higher precision is important
as less false predictions will happen leading to less days the road would be closed without any
risk to drivers. On the other hand, the accuracy and the recall have fallen. This means that the
operational system is safer as it predicts more events than this first model.
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Actual

0 1

Predicted 0 917 116

1 27 30

Figure 26: Confusion matrix representing the result of predictions based on the nearest
neighbors method for the test set.

accuracy 0.87 0.84

balanced accuracy 0.59 0.60

precision 0.53 0.35

recall 0.21 0.27

F1 0.30 0.30

Table 3: Indices calculated based on the confusion matrix to quantify performance of the nearest
neighbors model and the operation model.

5.3. Decision trees
For this model, more than one parameter are tuned in order to optimise the results. A heat

map was plotted to observe how the maximum depth and the minimum samples per leaf would
affect the results. The score and the balanced accuracy are calculated for each combination𝐹

β=1

and a heat map is created (Figure 27). This image permits the choice of the combination of
parameters that optimises the result. It is important to note that both indices are only calculated
in respect to the test set (a grid search is made) and it must be later verified if overfitting does
occur.
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Figure 27: heat mapping of the performance of decision tree model as the hyperparameters varie
for models with classes with same weights. Performance of model measured by (a) (b)𝐹

β=1

balanced accuracy

Observing both heat maps (Figure 27) it is visible that the and the balanced𝐹
β=1

accuracy are related. This is logical as both indices should increase as the model improves and is
capable of correctly predicting more rock falls. The model improves as the maximum depth
decreases. This indicates the trees are overfitting and searching to fit the model too closely. This
is especially true when the min sample leaf is smaller facilitating the overfitting. The optimum
model would be a small tree with a maximum depth of 3 and a minimum number of samples per
leaf of 8. This model was created and the confusion matrix is presented in figure 28.

Actual

0 1

Predicted 0 909 114

1 35 32

Figure 28: Confusion matrix representing the result of predictions based on the decision tree
method for the test set

36



Decision tree model

OperationalTrain Test

accuracy 0.85 0.86 0.84

balanced accuracy 0.63 0.59 0.60

precision 0.73 0.48 0.35

recall 0.28 0.22 0.27

F1 0.40 0.30 0.30

Table 4: Indices calculated based on the confusion matrix to quantify performance of the
decision tree model, for the test and train set, and the operation model.

The results for the train set are superior to the one for the test set. This is normal as the
model performs better on the data it was trained on. Both models have similar accuracies and
balanced accuracies, but the training data is much more precise than the test set leading to a
superior score. This happens even though a small depth was adopted. Possibly an even𝐹

β=1

smaller depth could be adopted or even a larger number of samples per leaf, but this result is
considered satisfactory.

Similar to the nearest neighbors this model has a smaller balanced accuracy as it predicts
less rock falls than the operational model, but it also has a higher precision, meaning that when it
predicts that there will be a rock fall there is a higher chance it will be true. In order to increase
the safety on the road the importance of predicting rock falls should be increased. This means
that the model will favor predicting rock falls even if it will have a negative impact on the
precision leading to more days the road is closed having a negative economic impact and
becoming an inconvenience to drivers. So, it is proposed to weight the predictions and it will be
adopted that the weight of predicting an event be 3 times greater than the ladder. The heat maps
are re-calculated with the adjusted weights.
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Figure 29: heat mapping of the performance of decision tree model as the hyperparameters varie
for models with classes with different weights. Performance of model measured by (a) (b)𝐹

β=1

balanced accuracy

Similar to the heat maps on Figure 27, Figure 29 shows a great performance for trees
with minimum depth and high amount of samples per leaf. On the other hand, there seems to be
an optimum model for a tree with a depth of 12 and min_samples_leaf equal to 7. Either option,
max_depth = 3 with min_samples_leaf = 9 or max_depth = 12 with min_samples_leaf = 7, could
be the best model. Both were calculated and the second one overfitted considerably. The
balanced accuracy for the training set was 0.74 and the was equal to 0.56 while the test set𝐹

β=1

was considerably worse (balanced accuracy = 0.63 and = 0.4). The model with lower depth𝐹
β=1

had a similar performance and the results for the training and testing sets were much closer.

Actual

0 1

Predicted 0 867 99

1 77 47

Figure 30: Confusion matrix representing the result of predictions based on the decision tree
classifier method for the train set.
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Decision tree classifier Operational

accuracy 0.84 0.84

balanced accuracy 0.62 0.60

precision 0.38 0.35

recall 0.32 0.27

F1 0.35 0.30

Table 5: Indices calculated based on the confusion matrix to quantify performance of the
decision tree classifier, for the test and train set, and the operation model.

This is the first model which is capable of correctly predicting more rock falls than the
operational model with 18 additional correct predictions. Those predictions come with an
additional 6 days when the model incorrectly predicted that there would be an event. This means
6 additional days the road could be operational with no accidents. Even though this model is
safer for drivers the precision is greater than the operational. For future models this balance of
weights will be adopted. Additionally the tuning will be done solely with the balanced accuracy
as it is strongly correlated with the .𝐹

β=1

Bagging Decision tree Classifier
As described in the previous section, this method is an optimization of decision tree

approach by using a combination of trees in order to predict if a rock will detach on a certain
date. For this model both hyper-parameters tuned for the decision tree will be optimized once
again and additionally the number of estimators will also be tuned. In order to visualise the
interaction between the three variables 3 distinct heat maps will be represented. This enables the
choice of the hyper-parameters that will be maintained.
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Figure 31: heat mapping of the balanced accuracy of bagging tree classifier as the
hyper-parameters vary. The combination for each figure are: (a) minimum number of samples

per leaf and maximum depth, (b) number of estimators and maximum depth, (c) minimum
number of samples per leaf and number of estimators

Some general tendencies is that when the min samples leaf and the number of estimators
are equal to 1 the models perform worse. It is important to note that when only one estimator is
used the model is a simple decision tree as the one on the last section. Lowering the max depth
tends to increase the performance of the models. It was decided to use: max_depth=3,
min_samples_leaf=9, n_estimators=10.

40



Actual

0 1

Predicted 0 863 96

1 81 50

Figure 32: Confusion matrix representing the result of predictions based on the Bagging tree
classifier method for  the train set.

Bagging tree classifier Operational

accuracy 0.84 0.84

balanced accuracy 0.63 0.60

precision 0.38 0.35

recall 0.34 0.27

F1 0.34 0.30

Table 6: Indices calculated based on the confusion matrix to quantify performance of the
bagging tree classifier, for the test and train set, and the operation model.

The model produced by the bagging method has superior results for all the indices
calculated. It is capable of identifying 3 additional rock falls while increasing the precision of
predictions. On the other hand, even though it increases the precision, as it predicts more rock
falls it also increases the days the road is closed and an argument could be made that the
operational model gives enough safety to drivers while maximizing profit.

5.4. Neural Networks
Dense Neural Networks

Various models were created by Courteille [Courteille, 2021] to examine the capabilities
of NN to predict the rock falls based on the rain. The same training and testing set were used, but
the input data included not only the rain of the previous 5 days but instead the rain of the
previous 10 days. A DNN was created with one hidden dense layer with relu activation and a
final dense layer with softmax activation. Weighing samples by inverse of their occuring
frequencies <- unbalanced dataset was also done. The resulting confusion matrix is represented
by the Figure 33
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DNN

actual

0 1

predicted

0 780 82

1 158 60
Figure 33: confusion matrix representing result of DNN model with the rain of the previous 10

days for the test data

DNN Operational
accuracy 0.78 0.84

balanced
accuracy 0.63 0.60

precision 0.28 0.35

recall 0.42 0.27

F1 0.33 0.30

Table 7: Indices calculated based on the confusion matrix to quantify performance of the DNN
and the operation model for the test set.

This model produced by the DNN is safer than the operational model with a higher recall.
It is capable of identifying almost half of all the events. But, this comes with a lower precision.
The model is capable of predicting more rock falls making it a safer alternative, but it will also
predict more frequently an event will occur while no rock falls. This model would lead the road
to be closed 20.2% of the time.

With the objective of better understanding the data a third class was added. Class 0: no
event, class 1: 1 rock fall, class 2: more than one event. It is expected that when we have more
than one rock fall the same day it will be related to more important rains. In order to more easily
compare to the other models and also to have a more operational result classes 1 and 2 are
combined and a final confusion matrix (Figure 34) is produced.

Comparing the overall result of the model using 3 classes and 2 classes we observe they
are similar. With 3 classes the model was slightly safer predicting 2 additional rock falls, but also
decreased the precision closing the road 38 additional days. The confusion matrix with the 3
classes conforms to the hypothesis that days with more than one instance will be easier to
predict. Only 14 of the 43 days (33%) with more than one event are classified as a day with no
event while two thirds of the days with only one event were classified as days no rocks would
fall.

In order to improve predictions a model was constructed including not only the rain as a
variable but also the number of blocks that reached the road on the previous days. When a block
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falls it destabilizes the bedrock. The distribution of stresses is altered and this can cause other
blocs to fall. This additional information did not improve the performance of the model.

DNN 3-classes

actual

0 1 2

predicted

0 737 66 14

1 164 29 14

2 32 4 15
Figure 34 : confusion matrix for DNN model using 3 classes for the test data

DNN 3-classes

actual

0 1

predicted

0 737 80

1 196 62
Figure 35 : confusion matrix for DNN model using 3 classes adapted to 2 classes

DNN 3-class DNN 2-class Operational
accuracy 0.74 0.78 0.84

balanced accuracy 0.61 0.63 0.60

precision 0.24 0.28 0.35

recall 0.44 0.42 0.27

F1 0.31 0.33 0.30

Table 8: indices for the DNN 3-classes model adapted to 2-classes and the Operational model

Convolution Neural Network
This method is more adapted to this data set compared to the other neural networks as it

was capable of detecting at least as many rock falls as the others while incorrectly predicting less
events. Comparing it to the operational model it is safer with a higher recall and a similar, yet
lower precision. This model is safer than the operational code, but it will dictate the road stays
closed for a longer period of time.
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CNN

actual

0 1

predicted

0 805 80

1 133 62
Figure 36 : confusion matrix for DNN model using 3 classes adapted to 2 classes

CNN Operational
accuracy 0.80 0.84

balanced
accuracy 0.65 0.60

precision 0.32 0.35

recall 0.44 0.27

F1 0.37 0.30

Table 9: indices for the CNN model and the Operational model

5.5. Other models
As described in the methodology Random forest classifier and Histogram gradient

boosting classifier were also calculated. The same processo of optimization and analysis of the
confusion matrix were done. Those results are present on the annex of this document.

The random forest model had a similar result to the bagging classifier with a slightly
worse result for the test set, but superior for the training set indicating overfitting. The
parameters for the generation of this model were:

5.6. Discussion
The tested models return varied performances [Table 10]. Generally there is a trade off of

some characteristics in order to improve in others. The general tendency is that with stronger
rains there is a greater chance that an event will happen. The different models find this general
rule. Some will be safer for drivers meaning a smaller amount of rain will trigger the model. This
is reflected by a high recall. An example are the NN models which tend to favor security. On the
other hand they also have a lower precision meaning the road will be closed more frequently.

The most economically interesting models are those with the highest precision for which
the models will predict a rock will fall with a greater accuracy avoiding closures on days an
event is not present. An example of this are the nearest neighbors model and the decision tree
model. Both of those have the highest precision but the smallest recall.

The NN models were tuned to give great importance to the safety (not tuned, but
data-driven with unbalanced dataset) while the nearest neighbors and simple decision tree gave
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equal importance to predicting and not predicting, which led to models that were not as safe as
the operational, meaning the risk of driving the road would decrease if this model was used. Two
models (decision tree 1:3 and bagging) were created with an importance 3 times greater to
correctly predicting rock falls rather than correctly predicting no rock falls and those seem to be
a satisfactory trade off. Those models have similar yet slightly higher indices. Even though those
models do have a higher precision than the operational they do close the road a greater amount of
times. It could be argued that the risk of the operational model is already sufficiently low and
that as it closes the road less than the other models it would be preferable to the other models.

The 7 models created are different and are superior to the operational on some aspects,
but all of them have similar accuracy and balanced accuracy. This indicates there is a part of the
data that can not be explained by the rain by itself. Other variables could be included and could
help to explain a part of those rock falls or they could simply be random and no other explicative
variable could improve the performance.

Models Accuracy
balanced
accuracy precision recall F1

Operational 0.84 0.60 0.35 0.27 0.30

Nearest
neighbors 0.87 0.59 0.53 0.21 0.30

decision tree 0.86 0.59 0.48 0.22 0.30

decision tree
1:3 0.84 0.62 0.38 0.32 0.35

bagging 0.84 0.63 0.38 0.34 0.36

DNN 0.78 0.63 0.28 0.42 0.33

DNN 3-classes 0.74 0.61 0.24 0.44 0.31

CNN 0.80 0.65 0.32 0.44 0.37

Table 10: Combination of result of different models

When considering the application of an AI model to the operation of the road and
comparing how it would affect drivers it is important to consider the frequency of the closures
and their durations. Will the closures be punctual or will they be continuous? As rock falls are
correlated with the rain which is a seasonal event the events will also be seasonal and be
concentrated on certain moments of the year. This means there will be some continuity as is the
case for the operational system. Figure 37 illustrates this continuity during the first months of
2004 when there is the greatest concentration of events.
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Figure 37: Comparison of predictions with time of the operational model and the model created
by bagging with weight 5 times greater to predicting an event during the first part of the year

2004.

Conclusion
This study consisted in studying a cliff and the rock falls that occurred on the road

parallel to it in previous years.The first step was selecting which site to study. The RN1 from la
Réunion was chosen due to its detailed data set with many events. The data needed to be
acquired from different partners. When the data was transferred it could then be formatted and
then analysed. It is important to do a simple analysis to have a good understanding of the
situation and to spot any early tendencies and possible incorrect data. Subsequently predictive
models can be created and finally analysed in order to draw conclusions.

3 different methods were used to create models, nearest neighbors, decision trees and
NNs. For each one models were tuned in order to produce an optimal performance for
predictions over the test data set. The results were summarized on confusion matrices and the
models were compared between each other and with the operational system.

This study has two goals. The first is to better understand the causes of rock falls. By
creating predictive models based on past events it is possible to understand which are the most
important factors and at what intensities the blocks will fall. The models created by this study
indicate that the rain is capable of explaining a part of the events but not all of them. There is a
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percentage of them that are not linked to the rain. The highest percentage of events that were
correctly predicted was 44% by the NN models. As developed in the introduction, a combination
of factors cause the rocks to detach and reach the road and this study focuses on one, the rain.

The second objective is to compare the performance of AI with other methods and its
capabilities for predicting rock falls. This includes the precision of predictions, the applicability
of the models and the time to produce the models. 3 different types of predictive models were
compared to the operational one, and the performances (Table 10) were similar. Some models
were safer and some were less restrictive, but with the same input we can affirm that both
provide similar performances.

It is also important to consider the applicability of the models. The operational model that
was adopted after 2004 was simple, making it easy to apply. The other models are more
complex. It is harder for an operator to manually predict if the road will be closed or not, and
even harder for the driver to do the same. The applicability of the model would also be harder
and a greater inconvenience for drivers if the road was constantly opening and closing. As
discussed in section 5.6. the openings and closures of the road with the different models are
similar.

One of the greatest improvements of the AI over the operational model is the time needed
to produce a model. Both methods need an initial arduous task of preparing the data, but after it
is concluded the process of creating an effective model is reasonably simple and quick to a data
scientist. The time to adapt the model, created by artificial intelligence, to be operational is yet to
be analysed.

This study presented positive results that indicate that AI could be used in operational
scenarios in order to optimize road control. The models could produce results at least as
performant as the one that was adopted. It is quicker to create the AI model saving time. Even
though the results are promising there are still limitations to this work and areas that could be
expanded.

As the different hyper-parameters were tuned for the different models, the goal was to
maximize the balanced accuracy of the test set. This means they were tuned specially to the
studied test set. In order to avoid this, a validation set is used. The model is trained using the
train set, the hyperparameters are tuned to the test set and a validation set is used to verify the
performance of the model to an unseen data set.

This study focused mainly on the period between 2000 and 2007. Studying the period
after 2008 would give us an alternative data set to test the performance of the different methods.
As it has fewer events it would help analysing the capability of the model for data sets with a
greater imbalance of classes.

As explained in section 5.6., the rain is not capable of explaining the totality of the
events. Studies including other possible explicative variables could help explain another part of
the rock falls. During the discussions the applicability of the AI model is taken into account. It
wouldn’t be ideal to apply the model directly. A future study would be needed to modify the
model in a way it becomes easily applied to control the road circulation.
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In order to better understand the limitations and capacities of AI to predict rock falls it is
important to study different sites. This variety will permit us to verify what was done on this
work making sure it is applicable to different contexts. Moreover, the RN1 was a great case for a
first study due to its simplicity not having the freeze thaw cycles and earthquakes, but creating
models where those features are also taken into consideration could be more adapted to AI.

The predictive models always aimed to predict the day a rock reached the road while
another important information is the position it fell. Initial analysis of the spatial distribution was
made, but no models were created incorporating the spatial aspect of the cliff. A space time
model could be operational by incorporating partial closures of the road. Having sections of the
road completely open helps the driver have more comfort and reduces the time of travel.
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Attachments

Additional result of models : Random Forest

Figure 1 : heat map representing the balanced accuracy for different combinations of
hyper-parameters for a Random forest model with a weight 3 times greater for predicting there

will be an event

Values adopted :
n_estimators=100
max_depth=10
min_samples_leaf=9
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Random Forest

actual

0 1

predicted

0 849 94

1 95 52
Figure 2 : confusion matrix for Random forest model adopting a weight 3 times greater for

predicting there will be an event

Random Forest Operational
accuracy 0.80 0.84

balanced accuracy 0,62 0.60

precision 0,35 0.35

recall 0,34 0.27

F1 0,35 0.30

Table 1: indices for the Random forest model and the Operational model

Additional result of models : Histogram based gradient boosting
Simple model made with no optimisation. The default value, defined by sklearn, was

used for most of the hyper-parameters with the exception of the maximum depth that was fixed
at 3.

HistGradBoosting

actual

0 1

predicted

0 901 109

1 43 37
Figure 1 : confusion matrix for histogram based gradient boosting model
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HistGradBoosting Operational
accuracy 0.82 0.84

balanced accuracy 0,60 0.60

precision 0,46 0.35

recall 0,25 0.27

F1 0,31 0.30

Table 1: indices for the HistGradBoosting model and the Operational model
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0.1. INTRODUCTION 5

0.1 Introduction
In this report, we study rockfall characteristics in Réunion RN1 road and aim at building a pre-
dictive model, which could replace existing, empirical, operational rules. Understanding more
precisely dynamics and dependencies of the process will allow us to design relevant data-driven
model.

This work have been done by LISTIC as part of RINA project, asked by the other part-
ner(CEREMA, BRGM, Géolithe), which are more in the applied fields of rockfall. Besides, a
complementary work on other machine Learning models (decision trees, nearest neighbour) on
same data has been achieved by CEREMA trough the internship of Guilherme Cunha de Barros
Santos. LISTIC follow up this second work and supervise it on the machine learning part.

In Chapter 1, we present available data, their format, first analysis with previous work and
descriptive statistics about on the dynamic of rockfall event.
In Chapter 2, we precise different mathematical manner to represent rockfall events. Some relevant
papers , linked to them, are presented in Annexe B.
Chapter 3 summarize numerical experiments with different models (Neural Networks, General
linear Model...), comparing best models with expert rules used in operational center. In conclusion,
we provide some preliminary results on the capability of machine learning to predict rockfall and
some perspectives of improvement.
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Chapter 1

Réunion Rockfall data analysis

1.1 Data characteristics
All available data are recorded in several tables that could be used in a relational database, see
Table 1.1. As it is simpler for single user and access, we just use pandas library to operate on these
files ".csv". We list here available information in spatial and/or temporal domain, on RN1 road.
Whole dataset is physically split in 2 periods, according to the major protection works in
2008.

1. events.csv(Temporal and Spatial) contains each rockfall with its date, its position along
RN1 road called PR for "Point de Repère" (in km) and its size (weight in kg, this variable
is not complete) . This table count 902 events from January 2000 to May 2018,

2. rain.csv(Temporal) contains daily quantity of rain in mm from January 2000 to December
2019, more precisely, it is the maximum value between the 3 stations along the RN1 road(high
correlation across this 3 geographical points)

3. zone_protect.csv(Spatial) which associate at each slice of the road, [prstart; prend[ a binary
value : 1 if there is a protection over the road and 0 otherwise.

4. zone_geo.csv(Spatial) which associate at each slice of the road [pr′start; pr
′
end[ the type of

geological layer

• Zone 0 : lower layer predominance

• Zone 1 : upper layer predominance

• Zone 2 : intermediate layer present

5. standarized_area.csv(Spatial) of the cliff profile every 10 m

6. SCI.csv(Spatial): a Standardized Concavity Index of the cliff profile every 10 m

7
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7. TWI.csv(Spatial): a Topographic Wetness Index of the cliff top every 10 m

date pr size
2008-12-06 9.45 3
2008-12-21 8.15 40
2008-12-29 12.8 5
2009-01-03 12.25 1.5
2009-01-03 12.35 1

... ... ...

(a) events.csv

date rain
... ...

2008-12-19 2
2008-12-20 28
2008-12-21 8
2008-12-22 0

... ...

(b) rain.csv

zone prstart prend
0 1.7 2.9
2 2.9 3.1
0 3.1 5
... ... ...

(c) zone_geo.csv

zone prstart prend
0 1.7 2
1 2 5.3
0 5.3 5.5
... ... ...

(d) zone_protect.csv

Table 1.1: Database related to Réunion

Remarks:

• Two or more rockfalls can occur the same day but at different position PR.

• Protection and geological zone can be see as categorical function define for each PR of the
road, i.e. f(pr)=type of zone.

• Indexes standarized_area, SCI and TWI.csv are computed every 10 m from the cliff profile
using a DEM model. Time, location and size are own characteristics of rockfall hazard.
Rain, geological and protections, are external but can induce rockfall process.

1.2 Previous studies on rockfall and rainfall
In the paper [3], they look at rockfall hazard which is the probability that a rockfall of a given
volume occurs in given area within a specified time interval. This definition is mathematically
reflected by point process definition (see next chapter). They examine correlation between me-
teorological factors and rockfall on 3 databases including RN1 in Réunion like us (Burgundy
and Auvergne too). Their database is composed of 949 rockfalls events between 1998 and 2009.
They highlights presence of correlation between rockfalls and rainfall and between rockfalls (and
minimum temperatures for other sites). More precisely correlation is significant from 0 to 5 days.

In the paper [2], they study rockfall from the Mont Saint-Eynard (Grenoble) thanks to laser
scan and photos at different time frequencies. Their database count 1068 rockfall events acquired
from photos and a laser scan. Two external factors are well studied : rainfall and freeze-thaw
cycle. As negative temperature does not occur in Réunion, we just mention here results about
rainfall.
Adding to rainfall times series, they used rainfall episode. A rainfall episode begins when it
rains back after a given delay without rain. This time delay is set in order that 2 rainfalls episodes
are independent, i.e. the effect of first one stop before the second one begins. Such delay on the
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Mont Saint-Eynard was set to 24 hours.
They show that rainfall frequency during rainfall episodes is 3 times higher than without meteo-
rological event. Thus, it is multiply by factor of 7 in the first 25 h and decreases to 1 after 50h.
"Considering the mean intensity since the beginning of the episode, the influence factor amounts
to 27 if the intensity is higher than 5 mm.h−1. Considering the rainfall amount, it amounts to 7.5
if the rainfall amount is between 30 and 40 mm".
Therefore, rainfall episode belong to factors which can well explain a part of rockfall hazard
and should be take into account in future predictive model.

1.3 Comparison before/after major protection works in 2008

During this period, 139 rockfalls events occurs. If we aggregate them in space, we get only 104
times where 1 or more rockfall occurs. As we can see on Figure 1.6, daily number of rockfall span
from 0 to 5. Sample auto-correlation and correlogram show a slight annual pattern in number of
rockfall.
If we look at times between events, mean time between rockfall is about 25 days and we can see
in Figure 1.7, that inter-times distribution is badly fitted by exponential law. So point process of
rockfall times is clearly not an homogeneous Poisson Process.

Rainfall (Figure 1.6)

Daily rainfall quantity span from 0 to 175 mm with. Times between two consecutive rainfall is
around 3 days in average. Sample auto-correlation and correlogram confirm the annual seasonality
that we could already see in time series. A second significant peak in correlogram is present for 2
cycle/year ie an half-year periodicity.

Correlation between rockfall and rainfall (Figures ***)

If we superpose daily or monthly time series of rockfall and rainfall, we can observe temporal
similarities already observed in [3].To quantify such dependencies, we plot as well cross-correlation
(see chapter 2 for definition).
Daily rockfall times series is correlated to rainfall time series at short-term. More precisely,
maximum of correlation is for 1 day lag and it decrease till 5 days where it becomes not significantly.

Location, size, protection and geological zones (Figure *** )

Location of events are beyond cliff (between PR 1.7 and PR 13). They are unevenly distributed :
mainly around PR 6 and PR 12 .
Size of events span from 0.2 to 12 000 000 kg. Majority of events have size lower than 100 000 kg
(see join distribution location/size). Only 4 events are bigger and all are located between PR 9.2
and PR 10.05.
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We can see on right figure that lower layer predominance is mostly present before PR 5 and after
10.

Figure 1.1: Daily time series for the number of rockfall (top) and for quantity of rainfall (bottom)
before (left) and after (right) major protection works

1.4 Conclusion

First analysis on RN1 data show:

• a clear change-point in rockfall hazard after major works in 2008. We will focus on data
before 2008 because there are much more,
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Figure 1.2: Monthly time series for the number of rockfall (top) and for quantity of rainfall
(bottom) before (left) and after (right) major protection works

• point process of rockfall times is not an homogeneous Poisson Process, as time between event
doesn’t follow exponential law,

• strong seasonality in rainfall times series and quite strong in rockfall one,

• significantly correlation between rockfall and rainfall from day-1 to round day-5

Some perspectives for future works could be:

• rainfall episode in[2] belong to factors which can explain a part of rockfall hazard and
should be take into account in future predictive model,

• in [2], consider other variable dimension like : intensity of rain in mm.h−1, rockfall frequency
in h−1,

• consider threshold of event size (> 0.1m3) because dependencies and dynamics for small
or big rockfall seem to be not the same.
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Figure 1.3: Monthly time series for the number of rockfall (top) and for quantity of rainfall
(bottom) before (left) and after (right) major protection works

Figure 1.4: Monthly time series for the number of rockfall (top) and for quantity of rainfall
(bottom) before (left) and after (right) major protection works



1.4. CONCLUSION 13

Figure 1.5: Monthly time series for the number of rockfall (top) and for quantity of rainfall
(bottom) before (left) and after (right) major protection works
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Figure 1.6: At top, Daily time series (on left) for the number of rockfall and for quantity of
rainfall (on right). In the middle, sample auto-correlation with significance limits. At bottom,
correlogram , spectral counter-part of auto-correlation
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Figure 1.7: Distribution of inter-times: a) density function on left, b) inverse-cumulative density
function on right. All with an exponential fit with mean ' 25
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Chapter 2

Toward Formalisation

We can study rockfall phenomenon at 3 different level:

1. at temporal level, where events are spatially aggregated. Available variable are daily times
series of rain and of the number of rockfall.

2. at spatial level, where events are temporally aggregated. Available variable are the number
of rockfall, by binned location, protection zone and geological zone.

3. at spatio-temporal level, with all information. Available variable are daily times series of
rain, but also size of event, its location PR. This latter give extra information like geological
zone and protection zone. As resolution is better, the size of dataset should be much more
than here (less than 1000 rockfall),

Remark. At temporal level, when we aggregate spatially event. We could ask if there is a sense
for other variables to sum size, to average location ?

Different point of view : Mostly depending of sampling time of events, we can consider
different mathematical objects to model for this phenomenon if the amount of data allow it:

1. When events occurs at irregular times, we speak about point process (with only time
event, or with location and exogenous variable and size as markers). For these process,
many recent developments have been done with neural network . Counting process are
naturally associated with point process and they permit to view point process at a regular
sampling.

2. When events occurs at regular times, time series are the more natural way to see data,
like popular ARMA models with Auto-Regressive and Moving Average part. These process
are linear but we could add non-linearity like in Non-linear Auto-Regressive process (NAR)
and exogenous variable (NARX process).

Here, we present 2 types of machine learning model, which have been tested in this work:

17
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• Regression models where we only focus on the dependencies between rockfall and rainfall.
Those models don’t take into account time but we can introduce lagged time variable as
exogenous one. If target values are binary, then we call it logistic regression.

• Neural Networks with plenty of interconnected neurons and specifical functions. Due to
sparsity of dataset, we investigate only Supervised Learning. In that case, networks ability
to map inputs to target is learnt from labelled data.

2.1 Regular/Irregular sampling of events

2.1.1 Irregular sampling: Point process

Sometimes, a physical phenomenon is just seen at irregular points (for d-dimensional space) or
times, and can be modelled by a point process. In temporal dimension, a sample from point
process is a set of increasing times (Ti)i=1,...,N , each Ti ∈ R+. This sample can be encode in a
counting process N(.) :

N : R+ −→ N
t 7−→ N(t) =

∑
i 1Ti<t

N(t) represent the number of events occurring between time interval [0, t[. So, N[a,b[ = N(b)−N(a)
is number of points in [a, b[.

Let λ(.) a integrable function defined on R+, named intensity. Mean of the random number
of events can be computed from this intensity: by

E[N(t)] = Λ(t) =

∫ t

0

λ(s)ds

Definition 1. Point process is call Inhomogeneous Poisson Process with rate λ(t) if :

1. N(0) = 0 and N(t) has independent increments, i.e N[a,b[ is independent from N[c,d[ as soon
as [a, b[ and [c, d[ are disjoint intervals.

2. P[N(t + h) −N(t)] = λ(t)h + o(h). Events occurs at time t with a the rate λ(t). Moreover
it should be is a simple process (no more than one point at each time, almost surely)

Compared to general case, Poisson Process has independent increments! Such process are
called "Poisson" because they have the following property.

Property. The number of events in any interval [t, t+h] is a Poisson random variable P(µ) with
mean parameter µ depending on the location t and the width h of the interval:

µ = E[N(t+ h)−N(t)] =

∫ t+h

t

λ(s)ds
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is the expected number of events occurring between times t and t+ h

Example. The most basic example of a temporal point process is a homogeneous Poisson
process, which assumes that the events are independent of each other and events occurs at a
constant rate i.e λ(t) = λ. In that case, times between events ∆Ti = Ti−Ti−1 follow an exponential
law.

Example. Another popular example is the Hawkes process, which is a simple model of a self-
exciting point process. The intensity of the Hawkes process is given by λ(t|Ht) = µ+

∑
ti<t

g(t−ti),
where g(.) is a kernel function (g(s) = 0 if s < 0) that represents the triggering effect from the
past event

Application to rockfall:
As inter-event times distribution doesn’t follow an exponential law (previous chapter), Rockfall
events is not a homogeneous Poisson Process.

As previous basic statistics seem to show, rockfall event is at temporal level a point process
with an inhomogeneous seasonal intensity rate λ(t) (probability that a rockfall occur in time
interval [t; t + dt[). This intensity is correlated with rainfall point process which have a strong
annual seasonality.

We could model a point process with spatio-temporal intensity function λ(t, x) where variation
among x could be explained by protection, geological zone... As general for these point process,
we can define N(t, x) is the number of event between time interval [0, t[ between location [0, x[.
N(t, x) can be expressed from an 2D-intensity λ(t, x) which can be seen as instant rate of rockfall
at time t and at location x.

2.1.2 Regular sampling: Times Series

In this framework, the quantity of interest Xt = (Xi)i∈Z is evenly sampled each ∆t, generally in
time domain, so that i-th value is Xi = Xt[i∆t].

Definition 2. Xt is said second-order stationary if :

• E[Xi] is constant over time and named mean of process µ = E[Xi]

• E[XiXi+h] doesn’t depend of considered time i but only of time delay h ∈ Z. We call auto-
covariance:

γ(h) = E[(Xi − µ)(Xi+h − µ)]

Remark. • Usually we prefer its normalised version named auto-correlation ρ(h) = γ(h)
γ(0)

. γ(h)

and ρ(h) are symmetric i.e γ(−h) = γ(h) for h ∈ Z.

• Its spectral domain counterpart is the Power Spectral Density Γ(ν) through Fourier Trans-
form .
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• For our application, times series which values Xi lie in N, they are generally named count
times series.

If we have 2 times series Xt and Yt, like rainfall an rockfall daily times series for us, on can
measure (linear) dependencies between them through:

Definition 3. The cross-correlation between two times series Xt and Yt, for a given time lag
h ∈ N is :

Ch(Xt, Yt) =

∑
(Xt −Xt)(Yt−h − Yt)

σXσY

where σX =
√∑

(Xt −Xt)2 is the standard deviation of variable X

2.2 Regression models
These models regress a target variable Y against explicative variables X = [X1, X2, ..., Xp] without
taking explicitly time in consideration (like a succession of samples without order). General Linear
Model can be formulated as :

E[Y |X] = g(Xβ)

where β are coefficients vector, g(.) is the link function adapted to the probability law of Y . For
instance, if Y ∈ {0, 1, 2...} has Poisson distribution, g is logit ; if Y ∈ {0, 1} is a Bernouilli variable,
g is...

Example. In next chapter, we first try regression with previous rain and number of rockfall as
regressors. If NBt stands for the number of rockfall and Rt for rainfall quantity at day t (with lag
time or cumulative specified before), then regression vector is X = [Rt, Rt−1, ..., Rt−p, NBt−1, ...NBt−k].
Number of lags p and k should be determined by different statistical test.

2.3 Neural Networks (NNs)
From a statistical point of view, NNs are just non-linear function estimated fθ(.) from data,
that attempt to map inputs to target Ŷ = fθ̂(X). Contrary to classical estimators, the number
parameters card(θ) is often around million. They can be tuned thanks to their structure and
effective parallel computing.

2.3.1 Learning process

We say that a neural network learns from data because of its operating steps. First, all trainable
parameters θ of the model, like weights of connection and biases are randomly initialised.

After, the model improves itself to minimize a loss function L(Y, Ŷ ) = Lθ that measures the
error between predictions and true labels. This is achieved by iterating over each sample of the
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train dataset. Starting from model configuration θn, we can learn from one sample of labeled data
(X, Y ) better weights θn+1:

• a Forward Pass: given the input X and the actual model configuration θn, a prediction
Ŷ = fθn(X) is compute,

• a Backward Pass: given the label Y , the loss Lθ and its gradient ∇Lθ with respect to all
trainable parameters θ are computed. Model configuration θn is upgraded, in the opposite
direction of gradient to lower loss function (therefore errors between prediction and labels) :

θn+1 = θn − lr∇Lθ

where lr, the learning rate is a scaling factor, tuned during learning.

These two points, forming a learning step, are repeated over the entire dataset and are called a
training epoch.

After one epoch, model capabilities are evaluated on the validation dataset. Depending on the
results, some hyper-parameters could be adjusted like the learning rate.
To learn correctly, we repeat many epochs to reach a good predictive model. There are many
parameters that can be optimized for each problem like the structures for the intermediate layers,
changing the activation function, the error function and also the learning rate.

2.3.2 Forward Propagation: from input to predictions

To better understand their structure and how they works, we will illustrate it through a simple
Dense Neural Network (DNN). Besides, this example will be tested on RN1 Réunion data in next
chapter.

Definition 4. DNNs are composed by different layers of many neurons, all the neurons from a
layer being connected to all neurons from the previous and following layer.

Example. Let’s formalise a simple classification DNN with one hidden layer with M neurons and
one last layer with K neurons the number of classes (see example on Figure 2.1 and scheme of
one neuron).

For inputs X = (xi) ∈ RN , the j-th neuron hj from dense hidden layer integrate in a linear
way all neurons (xi) from previous layer:

hj =
N∑
i=1

wi,jxi + bi

where:
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• wi,j ∈ R is the connection weight between this hidden neurons and the i-th neuron from
previous layer (input),

• bj ∈ R is the bias,

• classically hj is followed by an relu activation to to model non linearity: relu(x)=max(0,x).

In a matrix way, hidden layer H = (Hj) ∈ RM is given by:

H = WHX +BH

where WH ∈ RN×M and BH ∈ RM are respectively connection weights and biases.

If Wlast ∈ RM×K and Blast ∈ RK denote weights and biases of last dense layer, output vector
is Wlast · relu(H) +Blast (with relu point-wise extended). Classically, this last layer is followed by
a softmax(.) activation define from RK to simplex [0, 1]K by:

softmax(ci) =
exp(ci)∑K
i=1 exp(ci)

that transform output vector to probability vector Ŷ on the K classes (∀ 1 ≤ i ≤ K, Ŷi ∈ [0, 1]
and

∑K
i=1 Ŷi = 1),

This give the Forward Propagation from input X to Ŷ :

Ŷ = softmax(Wlast · relu(WX +B) +Blast)

The predicted class is finaly the maximum argument of this output vector argmax1≤i<K(Yi).
In that case, trainable parameters are θ = [WH , BH , Wlast, Blast], and the mapping between

inputs and label is the parametric non linear function Ŷ = fθ(X)

Example. As example, if model compute Ŷ = [0.2, 0.1, 0.7] then predicted class is the last class
"3".

2.3.3 Backward Propagation: from loss function to weights update

Given a labelled data sample (X, Y ), to modify appropriately model weights θ, one should measure
errors between prediction Ŷ and true label Y , through a loss function L(Y, Ŷ ). As Ŷ = fθ(X),
for a given input X and Y is known, loss became a function of weights θ.

As we mention before, an simple gradient descent (like in optimizer SGD) θn+1 = θn − lr∇Lθ
permit to decrease iteratively loss function.

For classification task in our tested networks , we used the classical Cross-Entropy for the loss
function.

L(Y, Ŷ ) = Lθ = −
K∑
i=0

Yi log Ŷi = −Y T · log(Ŷ )
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where Y is the true label one-hot encoded and Ŷ is the model prediction as above.

Example. To follow previous example, if models predicts class "3" with Ŷ = [0.2, 0.1, 0.7] and
GT class is "3" then Y = [0, 0, 1] and then L = −1× log(0.7)

Figure 2.1: On left, scheme of DNNs used with one (or more) hidden layers. On right, focus on
one neuron hj in hidden layer.

2.4 Conclusion
Here, we introduce some theoretical point around point process and time series that can be inter-
esting for our application. Some models was presented, in particular we precise how we train a
neural network from labelled data (supervised learning).

Rockfall event can be naturally modeled by point process in temporal/spatial domain. As RN1
data are sparse, we aggregate spatially data and look at temporal dynamics (previous chapter): a
point process with an inhomogeneous seasonal intensity highly correlated with rainfall point pro-
cess. Therefore, quantity of interest would be event time (Ti) with some features (sum of size ?...).
Such point processes can be modeled by neural networks, see Annex B for a recent bibliography.

In next chapter, we focus on simple models which target is the daily number of rockfall NBt

with sometimes transformation on targets.
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Chapter 3

Experiments

Here, we present different models tested on Réunion Data. As we have sparse data, we just
investigate models at temporal level. We first present operational rules used during period 2000-
2020. Those expert rules applied on data spanning over the same period, give us a baseline for
comparing 3 types of models with different variations:

• Neural Networks : Dense ones (DNNs) or Convolutional ones (CNNs)

• Regression models : General Linear Model (GLM)

In all cases, targets are the daily number of rockfall NBt and inputs are previous rain quantities
Rt (and sometimes previous number of rockfalls) .

3.1 Experiments settings

3.1.1 Train/validation settings

As events are more frequent before protection works, we focus on the first part of data from 2000
to 2007 (Table 3.1).
Split Train/Val: For this period, rockfall data are absent during year 2005. So we split data into
train/val set around this year (See Table 3.1 for precision). Such split is permit because rockfall
event are quite stationary in time.

3.1.2 Grouping label for classification

As data are sparse, it would be very hard to predict exactly the number of rockfall at day t given
the history. In first attempt, we group labels (which span from 0 to Kmax over the whole history)
for classification task:

• 2 classes with ’0’ no event, ’1’ one or more event: a simple binary model that math exactly
expert rules

25
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period Nb events Nb sample 0 1 2
train 2000-2004 281 1512 81% 13% 5%
val 2005-2007 142 1046 87 % 9% 4%
X 2008-2018 134 3462 97 % 2% 1%

Table 3.1: 3-class Distribution of labels in 2000-2007 dataset in train/val set and in 2008-2018
dataset

• 3 classes with ’0’ no event, ’1’ one event, ’2’ two events: a bit more accurate representation
of data

Therefore, targets Yt for classification networks belong to {0, 1} or {0, 1, 2}
More groups could be considered with more available data. On other hand, we could also

consider a quantitative output with regression task (labels are bounded integer and could be
normalise by Kmax to give a probability)

3.1.3 Metrics for classification model

First, let recall classical metrics for classification:

• confusion matrix (see example in Table 3.2) to have all information on well , missed
classifications.

• accuracy which measure the proportion of correct classification among all, acc = TP+TN
TP+TN+FN+FP

,

• precision of each class which measure the proportion of well classified samples among all
predicted in this class, precision = TP

TP+FP
. Poor class precision means that there are many

over-detection (FP for binary) in this class,

• recall of each class which measure the proportion of well classified samples among all real
labelled in this class. In binary classification, recall usually indicate recall of posive class
recall = TP

TP+FN
. Poor class recall means that there are miss-detection (FN for binary) in

this class.

When classes are unbalanced, we prefer other metrics. In our binary case, negative samples (0
rockfall) is much more frequent in our dataset.

• balanced accuracy is the mean of positive and negative recall, ba =
(

TP
TP+FN

+ TN
TN+FP

)
/2,

• Fβ score , Fβ = (1+β2) precision×recall
β2(precision+recall)

. When β = 1, F1 which weights precision and recall
equally, is the variant most often used when learning from imbalanced data. For β > 1,Fβ
score put less more weight on recall and more weight on precision if 0 < β < 1
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Predicted
0 1 2

0 300 50 0
GT 1 5 33 10

2 0 2 12

Predicted
0 1 Recall

0 TN FP TN
TN+FP

GT 1 FN TP TP
TP+FN

Precision TN
TN+FN

TP
TP+FP

Table 3.2: Confusion matrix for classification: an example for 3 classes on left, the general form for
2 classes (Positive/Negatives and True/False) on right. For 2 class version, row/column normalized
versions of True Positives statistic, called Recall or Precision (of positive class)

3.2 Tested Models

3.2.1 Reference: Operating rules after year 2000

Some practical rules, based on rainfall statistics, have been set for RN1 Road. They are based on
different threshold for rainfall quantities.

Before major works, we can consider rules for road tipping (Yt = 1) and road opened
(Yt = 0) on day t, defined in 2004 by, based on rain quantities Rt :

• if 15 ≤ Rt < 30, then a road tipping for the next day: Yt+1 = 1

• if Rt ≥ 30, then road tipping for 3 days: Yt+1 = 1, Yt+2 = 1 and Yt+3 = 1

After major works in 2008, we used other rules defined by :

• if 40 ≤ Rt < 50, then a road tipping for the next day: Yt+1 = 1

• if Rt ≥ 50, then road tipping for 2 days: Yt+1 = 1 and Yt+2 = 1

Open Close Recall
Nothing 872 104
Rockfall 71 38 0.35

Precision 0.27

- Accuracy: 0.84
- Precision: 0.27
- Recall: 0.35
- Balanced accuracy: 0.62 = (0.89 + 0.35)/2

Table 3.3: Operating Rules defined in 2004 applied on validation set (1085 days from 2005 to
2008)
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3.2.2 Dense Neural Networks (DNNs)

First, we test simple DNN with one hidden layer. Targets is the daily number of rockfall NBt

at day t binned in 2 or 3 classes, inputs are previous rain Rt−1,.. and previous rockfall number
NBt−1 ...
As class targets NBt, even grouped in 2 or 3 classes are very unbalanced (see Table 3.1), we try
weighting loss by frequency of each class. All tested configuration settings for DNNs are listed
below, as complete enumeration of configuration settings is numerous, we test them by subset of
parameters.

Different configuration settings for learning NN classifier

DATA PRE-PROCESSING
- inputs : rain Rt−1,..., Rt−k with
k ∈ {5, 10} or with previous rockfall
NBt−1,..., NBt−k
- rescale in [True, False]: rescale input
data X by X−mean(X)

std(X)
to center data

around 0 where relu activation are
more efficient
- grouping labels in K = 2 or 3 classes

LEARNING HYPER-PARAMETER
- hidden: nb of neurons in hidden layer [32; 64]
- weighting_class in [True, False] : weighting
sample in loss function by their frequency in
training set
- batchsize in [32, 64, 128] : number of samples
fed together in model
- dropout in [0, 0.2, 0.4] : dropout in the hidden
layer to avoid over-fitting
- learning_rate in [0.001, 0.0005, 0.0001] :
- nb epochs for training

1st DNN Series: 3 class
FIXED SETTINGS
input : rain with 5 days lag
hidden: 64
epochs : 60

TESTED SETTINGS
batchsize: 32, 64, 128
lr : 0.0001 , 0.0005, 0.001
weighting : True, False
dropout : 0.0, 0.2, 0.4
rescale: True, False

2d DNN Series: 3 class
FIXED SETTINGS
input : rain
epochs : 60
lr : 0.001

TESTED SETTINGS
nb-lags :5, 10, 15
hidden: 32 or 64
weighting : True, False
dropout : 0.0, 0.2
rescale: True, False
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3d DNN Series: 2 class
FIXED SETTINGS
learning rate: 0.001
batchsize: 64
epochs : 60

TESTED SETTINGS
input : rain, rain and nb rockfall
nb-lags :5, 10, 15
hidden: 32 or 64
weighting : True, False
dropout : 0.0, 0.2
rescale: True, False

3-class DNN classifier

You can see in Annex A all experiments results:

• first series (108 trainings) with 3 classes and 5 days rain for inputs, show globally poor
results but slightly better with learning rate=0.001 and batchsize=64, and when dropout is
less than 0.4.

• second series (46 trainings) start with previous settings (+learning rate=0.001 and batch-
size=64), and test for lag of inputs. Globally, we still have poor result. When sample classes
are not weighted , we get degenerate confusion matrix, class 1 or 2 is not predict. When we
weight classes, class performance are much balanced with 73% accuracy :
- precision by class [0.90, 0.14, 0.29]
- recall by class [0.79, 0.29, 0.30] and confusion matrix:

Predicted
0 1 2

0 737 164 32
GT 1 66 29 4

2 14 14 15

2-class DNN classifier

To improve performance, we train a third series (with 80 trainings) of binary classifier with different
inputs and other hyper-parameter. Results are quite better than with 3 classes, especially when
rescale=True, weighting=True, inputs = (rain,nb), lag =(10,10), lr=0.001, batchsize=64.

Two experiments show better results (see Annex A for logs), one with hidden=64, dropout=0
and the other with hidden=32, dropout=0.2. For last one, we get 72% of accuracy with 0.24 for
precision, 0.51 for recall and confusion matrix:

Predicted
0 1

0 710 228
GT 1 69 73
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Despite, these networks give many over-detection (no true rockfall predicted as one) which can be
seen through the pour precision.

3.2.3 Convolutional Neural Networks (CNNs)

We trained also CNNs. They are famously used to identify patterns on images. Convolution can
be used to identify edges, curves and even more complex patterns. The convolution acts like a
filter that enhances certain patterns. On images, the convolution kernels, called filters, are matrix
while vectors on 1D times series, as for our dataset.

For rockfall events, they could permit to identify temporal pattern in previous rain or rockfall
daily series which could lead to rockfall. Contrary to DNNs, link from inputs to target is not
fixed by learnt weights but captured through convolution kernels, and probably more flexible. In
tested networks, we put one layer of convolution (with different kernel size) before a dense one for
classification (see Figure 3.1).

Figure 3.1: Scheme of CNNs used with one convolutional layer. All the Nfeat feature maps are
flattened and gathered in last dense classifying layer. On right, focus on one neuron hj in hidden
layer.

Different configuration settings for learning CNN classifier
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CNN Series: 2 class
FIXED SETTINGS
input : rain
learning rate: 0.001
batchsize: 64
epochs : 60
hidden: 64
nb filters : 64 (100 for one)

TESTED SETTINGS
nb-lags : 10,15
kernel size: 3, 5, 9, 13
weighting : True, False
dropout : 0.0, 0.2, 0.4
rescale: True, False

Over 11 tested networks, best results are obtained with 100 convolutional filters of 3 days size.
Balanced accuray is 0.65, recall at 0.44 and precision 0.32. Compare to DNN, with quite same
level of recall, they have less over-detection (so better precision) and confusion matrix:

Predicted
0 1

0 805 133
GT 1 80 62

3.2.4 Regression Models: Generalised Linear Model (GLM)

We test some GLM with either Poisson Distribution or Binomial (with normalising target Y
by their maximum values). All this fitted models have difficulties to model seasonal activities:
bursting period followed by calm one. For example, you can see predictions on train dataset in
Figure 3.2 for the estimated model (rain lagged to 5 days) below:

==============================================================================
Dep. Variable: nb No. Observations: 1512
Model: GLM Df Residuals: 1506
Model Family: Binomial Df Model: 5
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -92.975
Date: Mon, 08 Nov 2021 Deviance: 83.445
Time: 16:51:28 Pearson chi2: 149.
No. Iterations: 7
Covariance Type: nonrobust
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
rain1 0.0183 0.005 3.420 0.001 0.008 0.029
rain2 0.0028 0.006 0.515 0.606 -0.008 0.014
rain3 0.0149 0.005 2.759 0.006 0.004 0.025
rain4 -0.0046 0.014 -0.335 0.738 -0.031 0.022
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rain5 0.0033 0.011 0.286 0.775 -0.019 0.026
const -4.4517 0.246 -18.123 0.000 -4.933 -3.970
==============================================================================

Figure 3.2: GLM regression with Binomial law estimated on period 2000-2004 (train set of first
dataset)
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3.3 Conclusion
Here, we sum up these preliminary studies to build predictive models for rockfall hazard based on
some dependencies like rains quantities. These studies focuses at temporal level without taking
into account spatial information (location PR, geological and topological factors ...).

The objective was to investigate different models, their limitations and their performances.
Here, we have simplified the initial problem by considering classifying target in 2 or 3 groups.
On Table 3.4, we sum up best performances models for each type of relevant models:

• Operational rules standing for baseline is a binary classifier that have a good accuracy (84%)
but with less True Positive (TP is rockfall correctly detected) than other models. As classes
are unbalanced, it predicts mostly the frequent one (no rockfall). Accuracy is not relevant
metric in that case.

• 3-classes problem is much more expressive but in practice, even if classes are weighted, it’s
difficult to separate positive classes "1" and "2" while keeping good performances.

• 2-classes models have more good predictions (TP) but also over-detection (False positives
FP) than Operational Rules. In Table 3.4, we point out the two best 2-classes DNN models,
one with only rain as input and other one with rain/number of rockfall. Latter one gives
the best recall and TP from all models (54% and 77 TP) but also more over-detections (237
FP)

• 2-classes DNN models shows a good compromise between good-detections (62 TP) and over-
detections (133 FP) and so the best balanced accuracy (65%).

Globally, these Neural Networks have slightly better performance than Operational Rules.
Nonetheless, all this performances should be seen from an operational point of view because over-
detections (FP : predicting rockfall while there is nothing) and miss-detections (FN: predicting
nothing while there is a rockfall) have not the same consequences.

After the potential perspectives written in previous chapter conclusion, one could add:

• rockfall hazards seem to be a mix of "natural rockfall event" hardly predictable and "forced
rockfall event" caused by exogenous factors (like rain, temperature, thaw-thin cycle..). If
size of events could discriminate them (thresholding size), performances would be better.

• dynamic of rockfall is very different in low or high activity period. Here, we consider global
model but it could better to investigate switching models (from dry to rainy periods) with
their owns parameters.
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Model inputs recall
in %

precision
in %

balanced
acc in%

accuracy
in % TP FP FN TN

Oper
Rules

from
2004 35 27 60 84 38 104 71 872

3-class
DNN rain-10 29-35 14-29 47 73

2-class
DNN rain-10 42 28 59 78 60 158 82 780

2-class
DNN

rain-10
nb-10 54 25 64.5 72 77 237 65 701

2-class
CNN rain-10 44 32 65 80 62 133 80 805

Table 3.4: Best Performance in each type of Neural Networks (DNN, CNN 2 or 3 classes) compared
to Operational Rules (TP, FP, FN, TN, standing for True Positive, False Positive, False Negative,
True Negative)
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Results of series of experiments using DNN

TEST

var_shift dropout lr nb_lags weighting_class accuracy precision1 recall1
(’rain’, ’nb’) 0.0 0.001 -10,1 False 87.0 58.0 11.0
(’rain’,) 0.0 0.001 -15 False 86.0 40.0 13.0
(’rain’,) 0.0 0.001 -10 False 87.0 50.0 10.0
(’rain’,) 0.0 0.001 -15 False 85.0 30.0 11.0
(’rain’, ’nb’) 0.0 0.001 -10,1 False 86.0 44.0 13.0
(’rain’, ’nb’) 0.0 0.001 -5,5 False 87.0 52.0 8.0
(’rain’,) 0.0 0.001 -5 False 87.0 59.0 11.0
(’rain’,) 0.0 0.001 -10 False 87.0 46.0 12.0
(’rain’, ’nb’) 0.2 0.001 -10,1 False 87.0 49.0 13.0
(’rain’,) 0.2 0.001 -10 False 87.0 47.0 14.0
(’rain’,) 0.0 0.001 -5 False 87.0 47.0 12.0
(’rain’,) 0.2 0.001 -5 False 87.0 50.0 16.0
(’rain’, ’nb’) 0.0 0.001 -5,5 False 87.0 48.0 14.0
(’rain’, ’nb’) 0.2 0.001 -5,5 False 87.0 52.0 17.0
(’rain’,) 0.2 0.001 -15 False 86.0 46.0 17.0
(’rain’, ’nb’) 0.2 0.001 -10,1 False 87.0 52.0 16.0
(’rain’,) 0.2 0.001 -15 False 87.0 55.0 15.0
(’rain’, ’nb’) 0.0 0.001 -10,1 False 87.0 61.0 10.0
(’rain’, ’nb’) 0.0 0.001 -5,5 False 87.0 62.0 9.0
(’rain’,) 0.2 0.001 -10 False 87.0 57.0 18.0
(’rain’, ’nb’) 0.0 0.001 -10,1 False 87.0 49.0 18.0
(’rain’, ’nb’) 0.2 0.001 -10,1 False 87.0 59.0 12.0
(’rain’, ’nb’) 0.2 0.001 -5,5 False 87.0 51.0 13.0

35
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(’rain’,) 0.0 0.001 -10 False 88.0 68.0 11.0
(’rain’, ’nb’) 0.2 0.001 -5,5 False 87.0 57.0 11.0
(’rain’,) 0.0 0.001 -15 False 88.0 68.0 12.0
(’rain’,) 0.2 0.001 -10 False 87.0 65.0 9.0
(’rain’, ’nb’) 0.2 0.001 -10,1 False 87.0 50.0 17.0
(’rain’,) 0.0 0.001 -10 False 87.0 63.0 8.0
(’rain’,) 0.2 0.001 -10 False 88.0 68.0 11.0
(’rain’, ’nb’) 0.0 0.001 -5,5 False 87.0 64.0 10.0
(’rain’,) 0.2 0.001 -15 False 87.0 67.0 10.0
(’rain’,) 0.2 0.001 -5 False 87.0 65.0 8.0
(’rain’,) 0.0 0.001 -15 False 87.0 63.0 12.0
(’rain’,) 0.2 0.001 -15 False 87.0 63.0 12.0
(’rain’,) 0.0 0.001 -5 False 87.0 65.0 9.0
(’rain’, ’nb’) 0.2 0.001 -5,5 False 87.0 67.0 8.0
(’rain’,) 0.2 0.001 -5 False 87.0 51.0 13.0
(’rain’,) 0.0 0.001 -5 False 88.0 67.0 10.0
(’rain’, ’nb’) 0.0 0.001 -10,1 True 81.0 31.0 37.0
(’rain’,) 0.2 0.001 -5 False 87.0 65.0 9.0
(’rain’,) 0.0 0.001 -15 True 78.0 27.0 38.0
(’rain’, ’nb’) 0.0 0.001 -10,1 True 80.0 30.0 38.0
(’rain’,) 0.0 0.001 -10 True 80.0 31.0 40.0
(’rain’,) 0.0 0.001 -10 True 79.0 28.0 39.0
(’rain’, ’nb’) 0.0 0.001 -5,5 True 80.0 28.0 35.0
(’rain’, ’nb’) 0.0 0.001 -5,5 True 82.0 30.0 32.0
(’rain’,) 0.0 0.001 -5 True 82.0 32.0 35.0
(’rain’,) 0.0 0.001 -10 True 74.0 24.0 46.0
(’rain’,) 0.0 0.001 -15 True 77.0 26.0 39.0
(’rain’,) 0.0 0.001 -15 True 73.0 22.0 42.0
(’rain’,) 0.0 0.001 -10 True 72.0 21.0 40.0
(’rain’,) 0.2 0.001 -10 True 72.0 21.0 41.0
(’rain’,) 0.0 0.001 -5 True 82.0 32.0 33.0
(’rain’, ’nb’) 0.0 0.001 -10,1 True 72.0 24.0 51.0
(’rain’, ’nb’) 0.0 0.001 -10,1 True 72.0 24.0 51.0
(’rain’, ’nb’) 0.2 0.001 -5,5 True 78.0 26.0 38.0
(’rain’, ’nb’) 0.2 0.001 -10,1 True 80.0 30.0 41.0
(’rain’,) 0.2 0.001 -10 True 72.0 21.0 41.0
(’rain’,) 0.0 0.001 -5 True 76.0 24.0 36.0
(’rain’, ’nb’) 0.2 0.001 -10,1 True 72.0 24.0 51.0
(’rain’,) 0.0 0.001 -5 True 75.0 23.0 38.0
(’rain’,) 0.2 0.001 -5 True 79.0 28.0 39.0
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(’rain’, ’nb’) 0.2 0.001 -5,5 True 80.0 28.0 37.0
(’rain’, ’nb’) 0.0 0.001 -5,5 True 72.0 23.0 48.0
(’rain’, ’nb’) 0.2 0.001 -10,1 True 72.0 25.0 54.0
(’rain’,) 0.2 0.001 -15 True 72.0 22.0 43.0
(’rain’,) 0.2 0.001 -5 True 80.0 29.0 37.0
(’rain’, ’nb’) 0.0 0.001 -5,5 True 71.0 22.0 46.0
(’rain’,) 0.0 0.001 -15 True 72.0 21.0 42.0
(’rain’, ’nb’) 0.2 0.001 -5,5 True 72.0 23.0 48.0
(’rain’,) 0.2 0.001 -5 True 73.0 22.0 40.0
(’rain’,) 0.2 0.001 -5 True 75.0 23.0 38.0
(’rain’,) 0.2 0.001 -10 True 80.0 30.0 40.0
(’rain’, ’nb’) 0.2 0.001 -10,1 True 78.0 28.0 42.0
(’rain’,) 0.2 0.001 -15 True 76.0 24.0 39.0
(’rain’, ’nb’) 0.2 0.001 -5,5 True 72.0 22.0 45.0
(’rain’,) 0.2 0.001 -15 True 71.0 21.0 43.0
(’rain’,) 0.2 0.001 -15 True 77.0 26.0 41.0
(’rain’,) 0.2 0.001 -10 True 78.0 28.0 42.0

Table A.1: First Series of experiments for DNN with 3 classes

->binary_class-bsize:64-epochs:60-lr:0.001-hidden_l:64-weighting_class:True-dropout:0
-var_shift:(’rain’,’nb’)-nb_lags:(10,10)-rescale:True-date:13_07_08_31
All params
-> bsize : 64
-> epochs : 60
-> lr : 0.001
-> hidden_l : 64
-> weighting_class : True
-> dropout : 0
-> var_shift : (’rain’, ’nb’)
-> nb_lags : (10, 10)
-> rescale : True
-> date : 13_07_08_31
Model: "binary_class"
___________________________________________________________________________________
Layer (type) Output Shape Param #
===================================================================================
input_17 (InputLayer) [(None, 20)] 0
___________________________________________________________________________________
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dense_16 (Dense) (None, 64) 1344
___________________________________________________________________________________
dropout_9 (Dropout) (None, 64) 0
___________________________________________________________________________________
main (Dense) (None, 2) 130
===================================================================================
Total params: 1,474
Trainable params: 1,474
Non-trainable params: 0
__________________________________________________________________________________
-> confusion matrix:

0 1
0 704 234
1 70 72
-> accuracy:72.0
-> precision:[91. 24.]
-> recall:[75. 51.]

->binary_class-bsize:64-epochs:60-lr:0.001-hidden_l:32-weighting_class:True-dropout:0
-var_shift:(’rain’,’nb’)-nb_lags:(10,10)-rescale:True-date:13_07_08_30
All params
-> bsize : 64
-> epochs : 60
-> lr : 0.001
-> hidden_l : 32
-> weighting_class : True
-> dropout : 0
-> var_shift : (’rain’, ’nb’)
-> nb_lags : (10, 10)
-> rescale : True
-> date : 13_07_08_30
Model: "binary_class"
______________________________________________________________________________
Layer (type) Output Shape Param #
================================================================================
input_12 (InputLayer) [(None, 20)] 0
________________________________________________________________________________
dense_11 (Dense) (None, 32) 672
________________________________________________________________________________
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dropout_6 (Dropout) (None, 32) 0
_______________________________________________________________________________
main (Dense) (None, 2) 66
===============================================================================
Total params: 738
Trainable params: 738
Non-trainable params: 0
_______________________________________________________________________________
RESULTS on VALIDATION SET

-> confusion matrix:
0 1

0 710 228
1 69 73
-> accuracy:72.0
-> precision:[91. 24.]
-> recall:[76. 51.]

Expname:
->conv_binary_class-bsize:64-epochs:60-lr:0.001-hidden_l:64-weighting_class:True
-dropout:0.4-k_size:3-filters:100-pool:False-var_shift:(’rain’,)-nb_lags:(10,)-
rescale:False-date:18_07_17_50
All params
-> bsize : 64
-> epochs : 60
-> lr : 0.001
-> hidden_l : 64
-> weighting_class : True
-> dropout : 0.4
-> k_size : 3
-> filters : 100
-> pool : False
-> var_shift : (’rain’,)
-> nb_lags : (10,)
-> rescale : False
-> date : 18_07_17_50
Model: "conv_binary_class"
____________________________________________________________________________
Layer (type) Output Shape Param #
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============================================================================
input_6 (InputLayer) [(None, 10)] 0
____________________________________________________________________________
tf.expand_dims (None, 10, 1) 0
____________________________________________________________________________
conv1d (Conv1D) (None, 8, 100) 400
____________________________________________________________________________
batch_normalization (None, 8, 100) 400
____________________________________________________________________________
dropout_3 (Dropout) (None, 8, 100) 0
____________________________________________________________________________
flatten (Flatten) (None, 800) 0
____________________________________________________________________________
main (Dense) (None, 2) 1602
============================================================================
Total params: 2,402
Trainable params: 2,202
Non-trainable params: 200
____________________________________________________________________________
RESULTS on VALIDATION SET

-> confusion matrix:
0 1

0 805 133
1 80 62
-> precision:[0.91 0.32]
-> recall:[0.86 0.44]
-> accuracy:0.8
-> balanced_accuracy:0.65
-> fbeta_score:0.37
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Table A.2: Second Series of experiments for DNN(3 classes), with fixed parameters in blue, tested
ones in green, and metrics



42 APPENDIX A. RESULTS OF SERIES OF EXPERIMENTS USING DNN

Table A.3: Third Series of experiments for DNN(2 classes)
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Table A.4: Third Series of experiments for DNN(2 classes), second part
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Appendix B

Bibliography about point process related to
Deep Neural Network

Only recent works (since 2016) investigated DNN for point process. Several sub-family are used
in such task, mainly Recurrent Neural Network (RNN) with an hidden layer that endorse memory
through time (papers [5] [8] [9] [11]), NARX model [1], Spiking Neural Network (convolutional
network ??) and . Hereafter, we enumerate and sum up some related papers with citation of
meaning-full part.

Paper Boussaada 2018 [1]NARX models

"Actually, NARX concept is a nonlinear generalization of the Autoregressive Exogenous (ARX),
which is a standard instrument in linear black-box system identification. There are two different
architectures of NARX neural network model, series-parallel architecture (named also open-loop)
and parallel architectures (named also close-loop) given by equations below (see Figure B.1 for
illutration)"

ŷ(t+ 1) = F [y(t), y(t− 1), ...y(t− ny), x(t+ 1), x(t), ...x(t− nx)] (B.1)

ŷ(t+ 1) = F [ŷ(t), ŷ(t− 1), ...ŷ(t− ny), x(t+ 1), x(t), ...x(t− nx)] (B.2)

where F (.) is the mapping function of the neural network, ŷ(t+ 1) is the predicted output of the
NARX for the time t+ 1. ŷ(t), ..., ŷ(t− ny) are past outputs of the NARX. y(t),..., y(t− ny) are
the true past values of the times series. x(t + 1), ..., x(t − nx) are the inputs of the NARX. nx
and ny are numbers of input/output delays.

Paper N. Du 2016 [5]

Du et al. [5] proposed to use an RNN to model the conditional intensity function. In this
approach, an input vector xi , which extracts the information of the event time ti , is first fed into

45
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Figure B.1: NARX model illustration from paper [1]

the RNN. A simple form of the input is the inter-event interval as xi = (ti− ti−1) or its logarithm
as xi = (log(ti − ti−1)). A hidden state h i of the RNN is updated as follows:

hi = f(W hhi−1 +W xxi + bh)

where W h,W x , and bh denote the recurrent weight matrix, input weight matrix, and bias
term, respectively, and f is an activation function. We here treat the hidden state of the RNN
as a compact vector representation of the event history.The conditional intensity function is then
formulated as a function of the elapsed τ time from the most recent event and the hidden state
of the RNN, given as follows:

λ(t|Ht) = φ(t− ti|hi)

where φ(.) is a non-negative function referred to as hazard function Du et al. (2016) assumed the
following form for the hazard function

φ(τ |hi) = exp(wtτ + vφ × hi + bφ)

The exponential function in the above equation is used to ensure the non-negativity of the intensity.
In this model, the conditional intensity function exponentially decreases or increases with the
elapsed time τ from the most recent event until the next event " Since the occurrence of an event
may be triggered by what happened in the past, we can essentially specify models for the timing of
the next event given what we have already known so far. More formally, a marked temporal point
process is a random process of which the realization consists of a list of discrete events localized in
time,tj, yj with the timing tj ∈ R+ , the marker yj and j ∈ Z+ "
See Figure B.2 for architecture precision on RMTPP model. " Our key idea is to let the RNN (or
its modern variant LSTM [23], GRU [5], etc.) model the nonlinear dependency over both of the
markers and the timings from past events As shown in Figure 2, for the event occurring at the
time tj of type yj, the pair (tj, yj) is fed as the input into a RNN unfolded up to the j+1 th event.
The embedding hj−1 represents the memory of the influence from the timings and the markers of
past events. The neural network updates hj−1 to hj by taking into account the effect of the current
event (tj, yj).The advantage of this formulation is that we explicitly embed the event history into a
latent vector space, and by the elegant relation (4), we are now able to capture a general form of the



47

conditional intensity function λ?(t) without the need of specifying a fixed parametric specification
for the dependency structure over the history "

Figure B.2: RMTPP from paper [5], overview on left and zoom on unfold hidden state hj on right

Paper O. Takahiro 2019 [8]

Specialisation of RNN model proposed by Du et al [5]. source code available "In this approach,
an RNN is used to obtain a compact representation of the event history. The conditional intensity
function is then modeled as a function of the hidden state of the RNN. Consequently, the RNN
based models outperform the parametric models in prediction performance."

Paper A. Soen 2020 [9]

it give some theoretical results about point process approximation, some reference about RNN
models at most, and propose a RNN model call UNIPoint.

"A known method for approximating a wide variety of functions is the use of neural networks
Hornik et al. (1989); Hornik (1991). Recent work has utilised recurrent neural networks to define
point process intensity functions Du et al. (2016); Mei and Eisner (2017); Omi et al. (2019);
Shchur et al. (2020). A central concept amongst these models is the usage of a recurrent neural
network to encode the past events in a sequence, initially proposed by by the Recurrent Marked
Temporal Point Process model Du et al. (2016) "

"There are many different types of point processes, and a variety of applications in which they
are employed, for example analysing social networks Mishra et al. (2016); Wilhelm et al. (2018).
The homogeneous Poisson process is often considered the simplest type of point process, where
the number of events over a finite time interval is a random variable with a Poisson distribution
Kingman (2005); Daley and Vere-Jones (2007). For the homogeneous Poisson process, the dis-
tribution of points is independent of the history and the distribution does not change over time.
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The inhomogeneous Poisson process extends the homogeneous version by relaxing the condition
that the distribution is fixed over time. A particular type of inhomogenous Poisson process, the
Hawkes process, aims to model self-excitation and so has a distribution of points that depends on
the history Bacry et al. (2015); Laub et al. (2015) "

"Recurrent Marked Temporal Point Process (RMTPP) Du et al. (2016) was among the first
models to employ an recurrent neural network (RNN) to encode the event history and generate
parameters defining the intensity function. RMTPP uses an exponential intensity function, a
choice which has also been adopted by (Upadhyay et al., 2018). Other methods have employed
piecewise constant functions Li et al. (2018); Huang et al. (2019)."

Paper S. Xiao 2017 [12]

" Our model interprets the conditional intensity function of a point process as a nonlinear mapping,
which is synergetically established by a composite neural network with two RNNs as its building
blocks. See Figure B.3
...
We first make an observation that many conditional intensity functions can be viewed as an in-
tegration of two effects: i) spontaneous background component inherently affected by the internal
(time-varying) attributes of the individual and the event type; ii) effects from history events "

Figure B.3: RNN model from paper [12]

Paper Guen 2020 [6]

No point process modeling .No relevant
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A.C Turkmen 2019 [11]

"Temporal point processes (TPP) are probabilistic models of such data, namely discrete event sets
in continuous time. They have been extended widely to describe patterns through which events
(points) interact, and to model side information available in the form of features (marks)."

" In this paper, we propose a novel model, FastPoint, for efficient learning and approximate
inference in multivariate TPP. We combine the expressiveness of RNNs to model mutual excita-
tion (between marks), with well-studied Hawkes processes to capture local (within marks) temporal
relationships."

" In Recurrent Marked TPP (RMTPP), Du et al. [6] propose to model a multivariate point
process via an approximation to the conditional intensity function. This is achieved by an RNN,
in their experiments an LSTM [12]. Effectively, the LSTM embeds the event history Ht =
(ti, yi)|ti < t to a vector, on which the conditional intensity function and the conditional distribu-
tion of the mark of the next point are calculated. Concretely, they take the conditional intensity

λ∗(t) = exp(vThj + β(t− tj) + b)

where β, b are scalar parameters, v is a vector parameter of appropriate dimension. hj is the
output of the LSTM for point tj "

Spiking Neural Network (SNN)

[10] [7] [4] + See website http://www.xavierdupre.fr/app/ensae_teaching_cs/helpsphinx/ml2a/
td2a_mlplus_snn.html
A toolbox is available https://snntoolbox.readthedocs.io/en/latest/guide/intro.html

Other Papers to overview

http://www.xavierdupre.fr/app/ensae_teaching_cs/helpsphinx/ml2a/td2a_mlplus_snn.html
http://www.xavierdupre.fr/app/ensae_teaching_cs/helpsphinx/ml2a/td2a_mlplus_snn.html
https://snntoolbox.readthedocs.io/en/latest/guide/intro.html
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